Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38257011

ABSTRACT

Alkaline sodium hydroxide/sodium silicate-activating high-purity metakaolin geopolymerization is described in terms of metakaolin deconstruction in tetrahedral hydrate silicate [O[Si(OH)3]]- and aluminate [Al(OH)4]- ionic precursors followed by their reassembling in linear and branched sialates monomers that randomly copolymerize into an irregular crosslinked aluminosilicate network. The novelty of the approach resides in the concurrent thermo-calorimetric (differential scanning calorimetry, DSC) and rheological (dynamic mechanical analysis, DMA) characterizations of the liquid slurry during the transformation into a gel and a structural glassy solid. Tests were run either in temperature scan (1 °C/min) or isothermal (20 °C, 30 °C, 40 °C) cure conditions. A Gaussian functions deconvolution method has been applied to the DSC multi-peak thermograms to separate the kinetic contributions of the oligomer's concurrent reactions. DSC thermograms of all tested materials are well-fitted by a combination of three overlapping Gaussian curves that are associated with the initial linear low-molecular-weight (Mw) oligomers (P1) formation, oligomers branching into alumina-rich and silica-rich gels (P2), and inter- and intra-molecular crosslinking (P3). The loss factor has been used to define viscoelastic behavioral zones for each DMA rheo-thermogram operated in the same DSC thermal conditions. Macromolecular evolution and viscoelastic properties have been obtained by pairing the deconvoluted DSC thermograms with the viscoelastic behavioral zones of the DMA rheo-thermograms. Two main chemorheological behaviors have been identified relative to pre- and post-gelation separation of the viscoelastic liquid from the viscoelastic solid. Each comprises three behavioral zones, accounting for the concurrently occurring linear and branching oligomerization, aluminate-rich and silica-rich gel nucleations, crosslinking, and vitrification. A "rubbery plateau" in the loss factor path, observed for all the testing conditions, identifies a large behavioral transition zone dividing the incipient gelling liquid slurry from the material hard setting and vitrification.

2.
Polymers (Basel) ; 15(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139940

ABSTRACT

This paper examines how extrusion-based 3D-printing technology is evolving, utilising geopolymers (GPs) as sustainable inorganic aluminosilicate materials. Particularly, the current state of 3D-printing geopolymers is critically examined in this study from the perspectives of the production process, printability need, mix design, early-age material features, and sustainability, with an emphasis on the effects of various elements including the examination of the fresh and hardened properties of 3D-printed geopolymers, depending on the matrix composition, reinforcement type, curing process, and printing configuration. The differences and potential of two-part and one-part geopolymers are also analysed. The applications of advanced printable geopolymer materials and products are highlighted, along with some specific examples. The primary issues, outlooks, and paths for future efforts necessary to advance this technology are identified.

3.
Gels ; 9(10)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37888352

ABSTRACT

Magnesium AZ31 alloy has been chosen as bio-resorbable temporary prosthetic implants to investigate the degradation processes in a simulating body fluid (SBF) of the bare metal and the ones coated with low and high-molecular-weight PEO hydrogels. Hydrogel coatings are proposed to control the bioresorption rate of AZ31 alloy. The alloy was preliminary hydrothermally treated to form a magnesium hydroxide layer. 2 mm discs were used in bioresorption tests. Scanning electron microscopy was used to characterize the surface morphology of the hydrothermally treated and PEO-coated magnesium alloy surfaces. The variation of pH and the mass of Mg2+ ions present in the SBF corroding medium have been monitored for 15 days. Corrosion current densities (Icorr) and corrosion potentials (Ecorr) were evaluated from potentiodynamic polarisation tests on the samples exposed to the SBF solution. Kinetics of cumulative Mg ions mass released in the corroding solution have been evaluated regarding cations diffusion and mass transport parameters. The initial corrosion rates for the H- and L-Mw PEO-coated specimens were similar (0.95 ± 0.12 and 1.82 ± 0.52 mg/cm2day, respectively) and almost 4 to 5 times slower than that of the uncoated system (6.08 mg/cm2day). Results showed that the highly swollen PEO hydrogel coatings may extend into the bulk solution, protecting the coated metal and efficiently controlling the degradation rate of magnesium alloys. These findings focus more research effort on investigating such systems as tunable bioresorbable prosthetic materials providing idoneous environments to support cells and bone tissue repair.

4.
Polymers (Basel) ; 15(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37835971

ABSTRACT

Although geopolymers, as structural materials, should have superior engineering properties than traditional cementitious materials, they often need to improve their final characteristics' reproducibility due to the need for more control of the complex silico-aluminate decomposition and polymerisation stages. Thermosetting of a reactive geopolymeric paste involves tetrahedral Silicate and Aluminate precursor condensation into polyfunctional oligomers of progressively higher molecular weight, transforming the initial liquid into a gel and a structural solid. Viscosity and gelation control become particularly critical when the geopolymer is processed with 3D printing additive technology. Its physical state modification kinetics should match the flow and setting characteristics required by the deposition process. The reaction kinetics and the elastic and viscous characteristics preceding gelation and hardening have been investigated for an alkali-activated Metakaolin/Sodium Silicate-Sodium Hydroxide paste with a Si/Al ratio > 3. A chemoreological approach has been extended to these inorganic polymerisable systems, as already utilised for organic thermosetting polymers. Differential scanning calorimetry and Oscillatory DMA were carried out to monitor the advancement of the polymerisation reaction and the associated variations of the rheological viscoelastic properties. Dynamic thermal scans were run at 1 °C/min and a frequency of 10 Hz for the dynamic mechanical tests. The observed kinetics of polymerisation and variations of the elastic and viscous components of the complex viscosities and shear moduli are described in terms of polycondensation of linear and branched chains of oligomeric macromolecules of increasing complexity and molecular weight up to gelation (Gel1) and cross-linking of the gelled macrostructure (Gel2) and final glassy state. Geopolymerization can be allocated into two main behavioural zones: a viscoelastic liquid paste below 32.5% of reaction advancement and a viscoelastic solid above. Initial complex viscosities range from 2.3 ± 0.9 × 10-5 MPa*s to 6.8 ± 0.9 × 10-2 in the liquid-like state and from 1.9 ± 0.1 MPa to 9.6 ± 2.1 × 102 MPa in the solid-like state.

5.
Polymers (Basel) ; 15(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36904328

ABSTRACT

With progress in the bone tissue engineering (BTE) field, there is an important need to develop innovative biomaterials to improve the bone healing process using reproducible, affordable, and low-environmental-impact alternative synthetic strategies. This review thoroughly examines geopolymers' state-of-the-art and current applications and their future perspectives for bone tissue applications. This paper aims to analyse the potential of geopolymer materials in biomedical applications by reviewing the recent literature. Moreover, the characteristics of materials traditionally used as bioscaffolds are also compared, critically analysing the strengths and weaknesses of their use. The concerns that prevented the widespread use of alkali-activated materials as biomaterials (such as their toxicity and limited osteoconductivity) and the potentialities of geopolymers as ceramic biomaterials have also been considered. In particular, the possibility of targeting their mechanical properties and morphologies through their chemical compositions to meet specific and relevant requirements, such as biocompatibility and controlled porosity, is described. A statistical analysis of the published scientific literature is presented. Data on "geopolymers for biomedical applications" were extracted from the Scopus database. This paper focuses on possible strategies necessary to overcome the barriers that have limited their application in biomedicine. Specifically, innovative hybrid geopolymer-based formulations (alkali-activated mixtures for additive manufacturing) and their composites that optimise the porous morphology of bioscaffolds while minimising their toxicity for BTE are discussed.

6.
Bioengineering (Basel) ; 8(4)2021 Apr 04.
Article in English | MEDLINE | ID: mdl-33916623

ABSTRACT

Innovative tissue engineering biomimetic hydrogels based on hydrophilic polymers have been investigated for their physical and mechanical properties. 5% to 25% by volume loading PHEMA-nanosilica glassy hybrid samples were equilibrated at 37 °C in aqueous physiological isotonic and hypotonic saline solutions (0.15 and 0.05 M NaCl) simulating two limiting possible compositions of physiological extracellular fluids. The glassy and hydrated hybrid materials were characterized by both dynamo-mechanical properties and equilibrium absorptions in the two physiological-like aqueous solutions. The mechanical and morphological modifications occurring in the samples have been described. The 5% volume nanosilica loading hybrid nanocomposite composition showed mechanical characteristics in the dry and hydrated states that were comparable to those of cortical bone and articular cartilage, respectively, and then chosen for further sorption kinetics characterization. Sorption and swelling kinetics were monitored up to equilibrium. Changes in water activities and osmotic pressures in the water-hybrid systems equilibrated at the two limiting solute molarities of the physiological solutions have been related to the observed anomalous sorption modes using the Flory-Huggins interaction parameter approach. The bulk modulus of the dry and glassy PHEMA-5% nanosilica hybrid at 37 °C has been observed to be comparable with the values of the osmotic pressures generated from the sorption of isotonic and hypotonic solutions. The anomalous sorption modes and swelling rates are coherent with the difference between osmotic swelling pressures and hybrid glassy nano-composite bulk modulus: the lower the differences the higher the swelling rate and equilibrium solution uptakes. Bone tissue engineering benefits of the use of tuneable biomimetic scaffold biomaterials that can be "designed" to act as biocompatible and biomechanically active hybrid interfaces are discussed.

7.
Radiol Case Rep ; 2(1): 17-21, 2007.
Article in English | MEDLINE | ID: mdl-27303454

ABSTRACT

Foreign body ingestion is commonly encountered in the emergency department. Although in most cases, the ingested object will pass uneventfully in the feces [1], ingestion of sharp foreign bodies such as dental plates, sewing needles, toothpicks, fish bones and chicken bones carries increased risk of gastrointestinal perforation [2, 3, 4]. The use of toothpicks as both tooth-clearing implements and eating utensils increase the likelihood of toothpick unintentional ingestion [5]. Toothpicks account for 9% of reported foreign bodies ingested [6]. These pointed wooden bodies when accidentally swallowed are associated with higher risk of complications, such as gastric, small bowel or colonic perforation, obstruction, colonic impaction, gastrointestinal bleeding, subphrenic abscess, fistula formation, sepsis and/or death due to the damaged caused by the sharp pointed ends [7, 8, 9]. Unfortunately, many patients who ingested such objects fail to remember the mis-swallowing event when symptoms of perforation develop, making diagnosis problematic. We present a case of jejunal perforation secondary to an ingested wooden toothpick correctly diagnosed with Computed Tomography (CT).

SELECTION OF CITATIONS
SEARCH DETAIL
...