Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 16720, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30425256

ABSTRACT

Plant root systems play many key roles including nutrient and water uptake, interface with soil microorganisms and resistance to lodging. As for other crops, large and systematic studies of sugarcane root systems have always been hampered by the opaque and solid nature of the soil. In recent years, methods for efficient extraction of DNA from soil and for species-specific DNA amplification have been developed. Such tools could have potential to greatly improve root phenotyping and health diagnostic capability in sugarcane. In this paper, we present a fast, specific and efficient method for the quantification of sugarcane live root cells in soil samples. Previous studies were typically based on mass and length, so we established a calibration to convert root DNA quantity to live root mass. This diagnostic was validated on field samples and used to investigate the fate of the root system after harvest prior to regrowth of the ratoon crop. Two weeks after harvest, the sugarcane roots from the previous crop were still viable. This raises the question of the role that the root system of the harvested crop plays in the performance of the next crop and demonstrates how this test can be used to answer research questions.


Subject(s)
DNA, Plant/analysis , Plant Roots/genetics , Saccharum/genetics , DNA Copy Number Variations/genetics , DNA, Plant/genetics , Dipeptides/pharmacology , Fertilizers , Nitrogen/pharmacology , Plant Roots/drug effects , Polymerase Chain Reaction , Saccharum/drug effects , Saccharum/physiology , Soil/chemistry , Taq Polymerase/metabolism , Tissue Survival/drug effects , Tissue Survival/genetics
2.
Funct Plant Biol ; 33(6): 605-610, 2006 Jun.
Article in English | MEDLINE | ID: mdl-32689268

ABSTRACT

Sucrose-phosphate synthase (SPS) is a key enzyme in the pathway of sucrose synthesis. Five different gene families encoding SPS have been reported in the Poaceae [Castleden CK, Aoki N, Gillespie VJ, MacRae EA, Quick WP, Buchner P, Foyer CH, Furbank RT, Lunn JE (2004) Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiology 135, 1753-1764]. Expression of the five families in leaf and stem tissues of Saccharum spp. at different stages of development was determined by quantitative real-time PCR. The type B and C families of SPS genes were predominantly expressed in both immature and mature leaves, whereas the two subfamilies making up the type D family were expressed at similar levels in all tissues examined. In the type A family, expression was lowest in leaves and increased from the meristem region down to internode 7 of the stem.

SELECTION OF CITATIONS
SEARCH DETAIL
...