Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Insect Physiol ; 116: 57-69, 2019 07.
Article in English | MEDLINE | ID: mdl-31039373

ABSTRACT

Neural development depends on the controlled proliferation and differentiation of neural precursors. In holometabolous insects, these processes must be coordinated during larval and pupal development. Recently, protein arginine methylation has come into focus as an important mechanism of controlling neural stem cell proliferation and differentiation in mammals. Whether a similar mechanism is at work in insects is unknown. We investigated this possibility by determining the expression pattern of three protein arginine methyltransferase mRNAs (PRMT1, 4 and 5) in the developing brain of bumblebees by in situ hybridisation. We detected expression in neural precursors and neurons in functionally important brain areas throughout development. We found markedly higher expression of PRMT1, but not PRMT4 and PRMT5, in regions of mushroom bodies containing dividing cells during pupal stages at the time of active neurogenesis within this brain area. At later stages of development, PRMT1 expression levels were found to be uniform and did not correlate with actively dividing cells. Our study suggests a role for PRMT1 in regulating neural precursor divisions in the mushroom bodies of bumblebees during the period of neurogenesis.


Subject(s)
Bees/genetics , Gene Expression , Insect Proteins/genetics , Mushroom Bodies/growth & development , Neurogenesis/physiology , Protein-Arginine N-Methyltransferases/genetics , Animals , Bees/growth & development , Bees/metabolism , Brain/growth & development , Insect Proteins/metabolism , Larva/genetics , Larva/growth & development , Larva/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Pupa/genetics , Pupa/growth & development , Pupa/metabolism , RNA, Messenger/metabolism , Time Factors
2.
Sci Rep ; 9(1): 4651, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30894590

ABSTRACT

The dispersal of animals from their birth place has profound effects on the immediate survival and longer-term persistence of populations. Molecular studies have estimated that bumblebee colonies can be established many kilometers from their queens' natal nest site. However, little is known about when and how queens disperse during their lifespan. One possible life stage when dispersal may occur, is directly after emerging from hibernation. Here, harmonic radar tracking of artificially over-wintered Bombus terrestris queens shows that they spend most of their time resting on the ground with intermittent very short flights (duration and distance). We corroborate these behaviors with observations of wild queen bees, which show similar prolonged resting periods between short flights, indicating that the behavior of our radar-monitored bees was not due to the attachment of transponders nor an artifact of the bees being commercially reared. Radar-monitored flights were not continuously directed away from the origin, suggesting that bees were not intentionally trying to disperse from their artificial emergence site. Flights did not loop back to the origin suggesting bees were not trying to remember or get back to the original release site. Most individuals dispersed from the range of the harmonic radar within less than two days and did not return. Flight directions were not different from a uniform distribution and flight lengths followed an exponential distribution, both suggesting random dispersal. A random walk model based on our observed data estimates a positive net dispersal from the origin over many flights, indicating a biased random dispersal, and estimates the net displacement of queens to be within the range of those estimated in genetic studies. We suggest that a distinct post-hibernation life history stage consisting mostly of rest with intermittent short flights and infrequent foraging fulfils the dual purpose of ovary development and dispersal prior to nest searching.


Subject(s)
Bees/physiology , Flight, Animal/physiology , Hibernation/physiology , Homing Behavior/physiology , Animals , Female , Learning/physiology , Radar
3.
Curr Opin Neurobiol ; 54: 171-177, 2019 02.
Article in English | MEDLINE | ID: mdl-30445344

ABSTRACT

The small brains of insects and other invertebrates are often thought to constrain these animals to live entirely 'in the moment'. In this view, each one of their many seemingly hard-wired behavioral routines is triggered by a precisely defined environmental stimulus configuration, but there is no mental appreciation of the possible outcomes of one's actions, and therefore little flexibility. However, many studies show problem-solving behavior in various arthropod species that falls outside the range of fixed behavior routines. We propose that a basic form of foresight, the ability to predict the outcomes of one's own actions, is at the heart of such behavioral flexibility, and that the evolutionary roots of such outcome expectation are found in the need to disentangle sensory input that is predictable from self-generated motion versus input generated by changes in the outside world. Based on this, locusts, grasshoppers, dragonflies and flies seem to use internal models of the surrounding world to tailor their actions adaptively to predict the imminent future. Honeybees and orb-weaving spiders appear to act towards a desired outcome of their respective constructions, and the genetically pre-programmed routines that govern these constructions are subordinate to achieving the desired goal. Jumping spiders seem to preplan their route to prey suggesting they recognize the spatial challenge and actions necessary to obtain prey. Bumblebees and ants utilize objects not encountered in the wild as types of tools to solve problems in a manner that suggests an awareness of the desired outcome. Here we speculate that it may be simpler, in terms of the required evolutionary changes, computation and neural architecture, for arthropods to recognize their goal and predict the outcomes of their actions towards that goal, rather than having a large number of pre-programmed behaviors necessary to account for their observed behavioral flexibility.


Subject(s)
Arthropods/physiology , Behavior, Animal/physiology , Movement/physiology , Animals , Biological Evolution , Extremities/innervation , Models, Biological
4.
Sci Rep ; 8(1): 534, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29323174

ABSTRACT

Many genes have been implicated in mechanisms of long-term memory formation, but there is still much to be learnt about how the genome dynamically responds, transcriptionally, during memory formation. In this study, we used high-throughput sequencing to examine how transcriptome profiles change during visual memory formation in the bumblebee (Bombus terrestris). Expression of fifty-five genes changed immediately after bees were trained to associate reward with a single coloured chip, and the upregulated genes were predominantly genes known to be involved in signal transduction. Changes in the expression of eighty-one genes were observed four hours after learning a new colour, and the majority of these were upregulated and related to transcription and translation, which suggests that the building of new proteins may be the predominant activity four hours after training. Several of the genes identified in this study (e.g. Rab10, Shank1 and Arhgap44) are interesting candidates for further investigation of the molecular mechanisms of long-term memory formation. Our data demonstrate the dynamic gene expression changes after associative colour learning and identify genes involved in each transcriptional wave, which will be useful for future studies of gene regulation in learning and long-term memory formation.


Subject(s)
Bees/genetics , Memory, Long-Term , Transcriptome , Visual Perception , Animals , Bees/metabolism , Bees/physiology , Genes, Insect
5.
J Exp Biol ; 220(Pt 21): 3856-3868, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29093185

ABSTRACT

Until recently, whether invertebrates might exhibit emotions was unknown. This possibility has traditionally been dismissed by many as emotions are frequently defined with reference to human subjective experience, and invertebrates are often not considered to have the neural requirements for such sophisticated abilities. However, emotions are understood in humans and other vertebrates to be multifaceted brain states, comprising dissociable subjective, cognitive, behavioural and physiological components. In addition, accumulating literature is providing evidence of the impressive cognitive capacities and behavioural flexibility of invertebrates. Alongside these, within the past few years, a number of studies have adapted methods for assessing emotions in humans and other animals, to invertebrates, with intriguing results. Sea slugs, bees, crayfish, snails, crabs, flies and ants have all been shown to display various cognitive, behavioural and/or physiological phenomena that indicate internal states reminiscent of what we consider to be emotions. Given the limited neural architecture of many invertebrates, and the powerful tools available within invertebrate research, these results provide new opportunities for unveiling the neural mechanisms behind emotions and open new avenues towards the pharmacological manipulation of emotion and its genetic dissection, with advantages for disease research and therapeutic drug discovery. Here, we review the increasing evidence that invertebrates display some form of emotion, discuss the various methods used for assessing emotions in invertebrates and consider what can be garnered from further emotion research on invertebrates in terms of the evolution and underlying neural basis of emotion in a comparative context.


Subject(s)
Emotions , Invertebrates/physiology , Nervous System Physiological Phenomena , Animals , Brain/physiology
6.
Proc Biol Sci ; 284(1864)2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28978727

ABSTRACT

Synaptic plasticity is considered to be a basis for learning and memory. However, the relationship between synaptic arrangements and individual differences in learning and memory is poorly understood. Here, we explored how the density of microglomeruli (synaptic complexes) within specific regions of the bumblebee (Bombus terrestris) brain relates to both visual learning and inter-individual differences in learning and memory performance on a visual discrimination task. Using whole-brain immunolabelling, we measured the density of microglomeruli in the collar region (visual association areas) of the mushroom bodies of the bumblebee brain. We found that bumblebees which made fewer errors during training in a visual discrimination task had higher microglomerular density. Similarly, bumblebees that had better retention of the learned colour-reward associations two days after training had higher microglomerular density. Further experiments indicated experience-dependent changes in neural circuitry: learning a colour-reward contingency with 10 colours (but not two colours) does result, and exposure to many different colours may result, in changes to microglomerular density in the collar region of the mushroom bodies. These results reveal the varying roles that visual experience, visual learning and foraging activity have on neural structure. Although our study does not provide a causal link between microglomerular density and performance, the observed positive correlations provide new insights for future studies into how neural structure may relate to inter-individual differences in learning and memory.


Subject(s)
Bees/physiology , Color Perception , Neuronal Plasticity , Animals , Brain , Discrimination Learning , Learning , Memory
7.
PLoS Biol ; 14(12): e1002589, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28033324

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pbio.1002564.].

8.
PLoS Biol ; 14(10): e1002564, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27701411

ABSTRACT

Social insects make elaborate use of simple mechanisms to achieve seemingly complex behavior and may thus provide a unique resource to discover the basic cognitive elements required for culture, i.e., group-specific behaviors that spread from "innovators" to others in the group via social learning. We first explored whether bumblebees can learn a nonnatural object manipulation task by using string pulling to access a reward that was presented out of reach. Only a small minority "innovated" and solved the task spontaneously, but most bees were able to learn to pull a string when trained in a stepwise manner. In addition, naïve bees learnt the task by observing a trained demonstrator from a distance. Learning the behavior relied on a combination of simple associative mechanisms and trial-and-error learning and did not require "insight": naïve bees failed a "coiled-string experiment," in which they did not receive instant visual feedback of the target moving closer when tugging on the string. In cultural diffusion experiments, the skill spread rapidly from a single knowledgeable individual to the majority of a colony's foragers. We observed that there were several sequential sets ("generations") of learners, so that previously naïve observers could first acquire the technique by interacting with skilled individuals and, subsequently, themselves become demonstrators for the next "generation" of learners, so that the longevity of the skill in the population could outlast the lives of informed foragers. This suggests that, so long as animals have a basic toolkit of associative and motor learning processes, the key ingredients for the cultural spread of unusual skills are already in place and do not require sophisticated cognition.


Subject(s)
Bees/physiology , Behavior, Animal , Learning , Social Behavior , Animals , Task Performance and Analysis
9.
J Exp Biol ; 219(Pt 3): 412-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26596532

ABSTRACT

Normally, worker honey bees (Apis mellifera) begin foraging when more than 2 weeks old as adults, but if individual bees or the colony is stressed, bees often begin foraging precociously. Here, we examined whether bees that accelerated their behavioural development to begin foraging precociously differed from normal-aged foragers in cognitive performance. We used a social manipulation to generate precocious foragers from small experimental colonies and tested their performance in a free-flight visual reversal learning task, and a test of spatial memory. To assess spatial memory, bees were trained to learn the location of a small sucrose feeder within an array of three landmarks. In tests, the feeder and one landmark were removed and the search behaviour of the bees was recorded. Performance of precocious and normal-aged foragers did not differ in a visual reversal learning task, but the two groups showed a clear difference in spatial memory. Flight behaviour suggested normal-aged foragers were better able to infer the position of the removed landmark and feeder relative to the remaining landmarks than precocious foragers. Previous studies have documented the cognitive decline of old foragers, but this is the first suggestion of a cognitive deficit in young foragers. These data imply that worker honey bees continue their cognitive development during the adult stage. These findings may also help to explain why precocious foragers perform quite poorly as foragers and have a higher than normal loss rate.


Subject(s)
Appetitive Behavior , Bees/physiology , Spatial Learning , Spatial Memory , Animals , Cognition , Color Perception , Reversal Learning , Stress, Physiological
10.
Biol Lett ; 11(3)2015 03.
Article in English | MEDLINE | ID: mdl-25808001

ABSTRACT

Anthropogenic accumulation of metals such as manganese is a well-established health risk factor for vertebrates. By contrast, the long-term impact of these contaminants on invertebrates is mostly unknown. Here, we demonstrate that manganese ingestion alters brain biogenic amine levels in honeybees and fruit flies. Furthermore, we show that manganese exposure negatively affects foraging behaviour in the honeybee, an economically important pollinator. Our findings indicate that in addition to its direct impact on human health, the common industrial contaminant manganese might also have indirect environmental and economical impacts via the modulation of neuronal and behavioural functions in economically important insects.


Subject(s)
Bees/physiology , Behavior, Animal/physiology , Biogenic Amines/physiology , Environmental Pollutants/toxicity , Manganese/toxicity , Animals , Behavior, Animal/drug effects , Biogenic Amines/metabolism , Brain Chemistry/physiology , Drosophila melanogaster/physiology , Feeding Behavior/drug effects , Feeding Behavior/physiology
11.
Proc Natl Acad Sci U S A ; 112(11): 3427-32, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25675508

ABSTRACT

Many complex factors have been linked to the recent marked increase in honey bee colony failure, including pests and pathogens, agrochemicals, and nutritional stressors. It remains unclear, however, why colonies frequently react to stressors by losing almost their entire adult bee population in a short time, resulting in a colony population collapse. Here we examine the social dynamics underlying such dramatic colony failure. Bees respond to many stressors by foraging earlier in life. We manipulated the demography of experimental colonies to induce precocious foraging in bees and used radio tag tracking to examine the consequences of precocious foraging for their performance. Precocious foragers completed far fewer foraging trips in their life, and had a higher risk of death in their first flights. We constructed a demographic model to explore how this individual reaction of bees to stress might impact colony performance. In the model, when forager death rates were chronically elevated, an increasingly younger forager force caused a positive feedback that dramatically accelerated terminal population decline in the colony. This resulted in a breakdown in division of labor and loss of the adult population, leaving only brood, food, and few adults in the hive. This study explains the social processes that drive rapid depopulation of a colony, and we explore possible strategies to prevent colony failure. Understanding the process of colony failure helps identify the most effective strategies to improve colony resilience.


Subject(s)
Bees/physiology , Behavior, Animal/physiology , Colony Collapse , Stress, Physiological , Animals , Feeding Behavior/physiology , Longevity/physiology , Models, Biological , Radio Frequency Identification Device , Survival Analysis , Time Factors
12.
Anim Cogn ; 17(5): 1177-86, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24748464

ABSTRACT

If animals are trained with two similar stimuli such that one is rewarding (S+) and one punishing (S-), then following training animals show a greatest preference not for the S+, but for a novel stimulus that is slightly more different from the S- than the S+ is. This peak shift phenomenon has been widely reported for vertebrates and has recently been demonstrated for bumblebees and honey bees. To explore the nature of peak shift in invertebrates further, here we examined the properties of peak shift in honey bees trained in a free-flight olfactory learning assay. Hexanal and heptanol were mixed in different ratios to create a continuum of odour stimuli. Bees were trained to artificial flowers such that one odour mixture was rewarded with 2 molar sucrose (S+), and one punished with distasteful quinine (S-). After training, bees were given a non-rewarded preference test with five different mixtures of hexanal and heptanol. Following training bees' maximal preference was for an odour mixture slightly more distinct from the S- than the trained S+. This effect was not seen if bees were initially trained with two distinct odours, replicating the classic features of peak shift reported for vertebrates. We propose a conceptual model of how peak shift might occur in honey bees. We argue that peak shift does not require any higher level of processing than the known olfactory learning circuitry of the bee brain and suggest that peak shift is a very general feature of discrimination learning.


Subject(s)
Bees/physiology , Discrimination Learning/physiology , Smell , Animals , Odorants , Punishment/psychology , Reward , Smell/physiology
13.
Proc Natl Acad Sci U S A ; 110(47): 19155-9, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24191024

ABSTRACT

Human decision-making strategies are strongly influenced by an awareness of certainty or uncertainty (a form of metacognition) to increase the chances of making a right choice. Humans seek more information and defer choosing when they realize they have insufficient information to make an accurate decision, but whether animals are aware of uncertainty is currently highly contentious. To explore this issue, we examined how honey bees (Apis mellifera) responded to a visual discrimination task that varied in difficulty between trials. Free-flying bees were rewarded for a correct choice, punished for an incorrect choice, or could avoid choosing by exiting the trial (opting out). Bees opted out more often on difficult trials, and opting out improved their proportion of successful trials. Bees could also transfer the concept of opting out to a novel task. Our data show that bees selectively avoid difficult tasks they lack the information to solve. This finding has been considered as evidence that nonhuman animals can assess the certainty of a predicted outcome, and bees' performance was comparable to that of primates in a similar paradigm. We discuss whether these behavioral results prove bees react to uncertainty or whether associative mechanisms can explain such findings. To better frame metacognition as an issue for neurobiological investigation, we propose a neurobiological hypothesis of uncertainty monitoring based on the known circuitry of the honey bee brain.


Subject(s)
Association Learning/physiology , Bees/physiology , Choice Behavior/physiology , Decision Making/physiology , Analysis of Variance , Animals , Discrimination, Psychological/physiology , Uncertainty
14.
Annu Rev Entomol ; 58: 543-62, 2013.
Article in English | MEDLINE | ID: mdl-23020615

ABSTRACT

Reward seeking is a major motivator and organizer of behavior, and animals readily learn to modify their behavior to more easily obtain reward, or to respond to stimuli that are predictive of reward. Here, we compare what is known of reward processing mechanisms in insects with the well-studied vertebrate reward systems. In insects almost all of what is known of reward processing is derived from studies of reward learning. This is localized to the mushroom bodies and antennal lobes and organized by a network of hierarchically arranged modulatory circuits, especially those involving octopamine and dopamine. Neurogenetic studies with Drosophila have identified distinct circuit elements for reward learning, "wanting," and possibly "liking" in Drosophila, suggesting a modular structure to the insect reward processing system, which broadly parallels that of the mammals in terms of functional organization.


Subject(s)
Insecta/physiology , Animals , Dopamine/metabolism , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Insecta/anatomy & histology , Insecta/genetics , Learning , Mushroom Bodies/anatomy & histology , Mushroom Bodies/physiology , Octopamine/metabolism , Reward
15.
Wiley Interdiscip Rev Cogn Sci ; 4(5): 561-582, 2013 Sep.
Article in English | MEDLINE | ID: mdl-26304245

ABSTRACT

Diverse invertebrate species have been used for studies of learning and comparative cognition. Although we have gained invaluable information from this, in this study we argue that our approach to comparative learning research is rather deficient. Generally invertebrate learning research has focused mainly on arthropods, and most of that within the Hymenoptera and Diptera. Any true comparative analysis of the distribution of comparative cognitive abilities across phyla is hampered by this bias, and more fundamentally by a reporting bias toward positive results. To understand the limits of learning and cognition for a species, knowing what animals cannot do is at least as important as reporting what they can. Finally, much more effort needs to be focused on the neurobiological analysis of different types of learning to truly understand the differences and similarities of learning types. In this review, we first give a brief overview of the various forms of learning in invertebrates. We also suggest areas where further study is needed for a more comparative understanding of learning. Finally, using what is known of learning in honeybees and the well-studied honeybee brain, we present a model of how various complex forms of learning may be accounted for with the same neural circuitry required for so-called simple learning types. At the neurobiological level, different learning phenomena are unlikely to be independent, and without considering this it is very difficult to correctly interpret the phylogenetic distribution of learning and cognitive abilities. WIREs Cogn Sci 2013, 4:561-582. doi: 10.1002/wcs.1248 For further resources related to this article, please visit the WIREs website.

16.
J Biol Chem ; 281(20): 14129-35, 2006 May 19.
Article in English | MEDLINE | ID: mdl-16574660

ABSTRACT

Here we present evidence that the epithelial sodium channel (ENaC), a heteromeric membrane protein whose surface expression is regulated by ubiquitination, is present in clathrin-coated vesicles in epithelial cells that natively express ENaC. The channel subunits are ubiquitinated and co-immunoprecipitate with both epsin and clathrin adaptor proteins, and epsin, as expected, co-immunoprecipitates with clathrin adaptor proteins. The functional significance of these interactions was evaluated in a Xenopus oocyte expression system where co-expression of epsin and ENaC resulted in a down-regulation of ENaC activity; conversely, co-expression of epsin sub-domains acted as dominant-negative effectors and stimulated ENaC activity. These results identify epsin as an accessory protein linking ENaC to the clathrin-based endocytic machinery thereby regulating the activity of this ion channel at the cell surface.


Subject(s)
Adaptor Proteins, Vesicular Transport/chemistry , Clathrin/physiology , Animals , Cell Membrane/metabolism , Clathrin/metabolism , Down-Regulation , Electrophysiology , Endocytosis , Endosomes/metabolism , Mice , Mutation , Oocytes/metabolism , Protein Structure, Tertiary , Ubiquitin/chemistry , Xenopus
17.
J Biol Chem ; 280(9): 8513-22, 2005 Mar 04.
Article in English | MEDLINE | ID: mdl-15611061

ABSTRACT

Epithelial Na(+) channels (ENaCs) selectively conduct Na(+) and Li(+) but exclude K(+). A three-residue tract ((G/S)XS) present within all three subunits has been identified as a key structure forming a putative selectivity filter. We investigated the side chain orientation of residues within this tract by analyzing accessibility of the introduced sulfhydryl groups to thiophilic Cd(2+). Xenopus oocytes were used to express wild-type or mutant mouse alphabetagammaENaCs. The blocking effect of external Cd(2+) was examined by comparing amiloride-sensitive Na(+) currents measured by two-electrode voltage clamp in the absence and presence of Cd(2+) in the bath solution. The currents in mutant channels containing a single Cys substitution at the first or third position within the (G/S)XS tract (alphaG587C, alphaS589C, betaG529C, betaS531C, gammaS546C, and gammaS548C) were blocked by Cd(2+) with varying inhibitory constants (0.06-13 mm), whereas the currents in control channels were largely insensitive to Cd(2+) at concentrations up to 10 mm. The Cd(2+) blocking effects were fast, with time constants in the range of seconds, and were only partially reversible. The blocked currents were restored by 10 mm dithiothreitol. Mutant channels containing alanine or serine substitutions at these sites within the alpha subunit were only poorly and reversibly blocked by 10 mm Cd(2+). These results indicate that the introduced sulfhydryl groups face the conduction pore and suggest that serine hydroxyl groups within the selectivity filter in wild-type ENaCs face the conduction pore and may contribute to cation selectivity by participating in coordination of permeating cations.


Subject(s)
Cadmium/chemistry , Sodium Channels/chemistry , Alanine/chemistry , Amiloride/pharmacology , Amino Acid Sequence , Animals , Binding Sites , Cations , Cysteine/chemistry , Dithiothreitol/pharmacology , Dose-Response Relationship, Drug , Electrophysiology , Epithelial Sodium Channels , Mice , Models, Biological , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Oocytes/metabolism , Protein Binding , Protein Structure, Tertiary , RNA, Complementary/metabolism , Sequence Homology, Amino Acid , Serine/chemistry , Time Factors , Xenopus
18.
J Biol Chem ; 279(40): 41985-90, 2004 Oct 01.
Article in English | MEDLINE | ID: mdl-15292220

ABSTRACT

Using the yeast two-hybrid system, we identified a number of proteins that interacted with the carboxyl termini of murine epithelial sodium channel (ENaC) subunits. Initial screens indicated an interaction between the carboxyl terminus of beta-ENaC and IkappaB kinase-beta (IKKbeta), the kinase that phosphorylates Ikappabeta and results in nuclear targeting of NF-kappaB. A true two-hybrid reaction employing full-length IKKbeta and the carboxyl termini of all three subunits confirmed a strong interaction with beta-ENaC, a weak interaction with gamma-ENaC, and no interaction with alpha-ENaC. Co-immunoprecipitation studies for IKKbeta were performed in a murine cortical collecting duct cell line that endogenously expresses ENaC. Immunoprecipitation with beta-ENaC, but not gamma-ENaC, resulted in co-immunoprecipitation of IKKbeta. To examine the direct effects of IKKbeta on ENaC activity, co-expression studies were performed using the two-electrode voltage clamp technique in Xenopus oocytes. Oocytes were injected with cRNAs for alphabetagamma-ENaC with or without cRNA for IKKbeta. Co-injection of IKKbeta significantly increased the amiloride-sensitive current above controls. Using cell surface ENaC labeling, we determined that an increase of ENaC in the plasma membrane accounted for the increase in current. The injection of kinase-dead IKKbeta (K44A) in ENaC-expressing oocytes resulted in a significant decrease in current. Treatment of mpkCCD(c14) cells with aldosterone increased whole cell amounts of IKKbeta. Because this result suggested that aldosterone might activate NF-kappaB, mpkCCD(c14) cells were transiently transfected with a luciferase reporter gene responsive to NF-kappaB activation. Both aldosterone and tumor necrosis factor-alpha (TNFalpha) stimulation caused a similar and significant increase in luciferase activity as compared with controls. We conclude that IKKbeta interacts with ENaC by up-regulating ENaC at the plasma membrane and that the presence of IKKbeta is at very least permissive to ENaC function. These studies also suggest a previously unexpected interaction between the NF-kappaB transcription pathway and steroid regulatory pathways in epithelial cells.


Subject(s)
Epithelial Cells/metabolism , Protein Serine-Threonine Kinases/physiology , Sodium Channels/metabolism , Aldosterone/pharmacology , Animals , Cell Line, Transformed , Epithelial Sodium Channels , I-kappa B Kinase , Membrane Proteins , Mice , Oocytes , Patch-Clamp Techniques , Protein Binding , Protein Serine-Threonine Kinases/drug effects , Protein Serine-Threonine Kinases/metabolism , Transfection , Two-Hybrid System Techniques , Xenopus
19.
J Biol Chem ; 279(30): 31687-96, 2004 Jul 23.
Article in English | MEDLINE | ID: mdl-15145943

ABSTRACT

Inhibition of epithelial Na(+) channel (ENaC) activity by high concentrations of extracellular Na(+) is referred to as Na(+) self-inhibition. We investigated the effects of external Zn(2+) on whole cell Na(+) currents and on the Na(+) self-inhibition response in Xenopus oocytes expressing mouse alphabetagamma ENaC. Na(+) self-inhibition was examined by analyzing inward current decay from a peak current to a steady-state current following a fast switching of a low Na(+) (1 mm) bath solution to a high Na(+) (110 mm) solution. Our results indicate that external Zn(2+) rapidly and reversibly activates ENaC in a dose-dependent manner with an estimated EC(50) of 2 microm. External Zn(2+) in the high Na(+) bath also prevents or reverses Na(+) self-inhibition with similar affinity. Zn(2+) activation is dependent on extracellular Na(+) concentration and is absent in ENaCs containing gammaH239 mutations that eliminate Na(+) self-inhibition and in alphaS580Cbetagamma following covalent modification by a sulfhydryl-reactive reagent that locks the channels in a fully open state. In contrast, external Ni(2+) inhibition of ENaC currents appears to be additive to Na(+) self-inhibition when Ni(2+) is present in the high Na(+) bath. Pretreatment of oocytes with Ni(2+) in a low Na(+) bath also prevents the current decay following a switch to a high Na(+) bath but rendered the currents below the control steady-state level measured in the absence of Ni(2+) pretreatment. Our results suggest that external Zn(2+) activates ENaC by relieving the channel from Na(+) self-inhibition, and that external Ni(2+) mimics or masks Na(+) self-inhibition.


Subject(s)
Sodium Channels/drug effects , Sodium Channels/metabolism , Zinc/pharmacology , Animals , Epithelial Sodium Channels , Female , In Vitro Techniques , Kinetics , Mice , Mutagenesis, Site-Directed , Nickel/pharmacology , Oocytes/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/metabolism , Sodium/pharmacology
20.
J Biol Chem ; 278(16): 13867-74, 2003 Apr 18.
Article in English | MEDLINE | ID: mdl-12576470

ABSTRACT

Epithelial sodium channels (ENaCs) are composed of three homologous subunits that have regions preceding the second transmembrane domain (also referred as pre-M2) that form part of the channel pore. To identify residues within this region of the beta-subunit that line the pore, we systematically mutated residues Gln(523)-Ile(536) to cysteine. Wild type and mutant mouse ENaCs were expressed in Xenopus oocytes, and a two-electrode voltage clamp was used to examine the properties of mutant channels. Cysteine substitutions of 9 of 13 residues significantly altered Li(+) to Na(+) current ratios, whereas only cysteine replacement of beta Gly(529) resulted in K(+)-permeable channels. Besides beta G525C, large increases in the inhibitory constant of amiloride were observed with mutations at beta Gly(529) and beta Ser(531) within the previously identified 3-residue tract that restricts K(+) permeation. Cysteine substitution preceding (beta Phe(524) and beta Gly(525)), within (beta Gly(530)) or following (beta Leu(533)) this 3-residue tract, resulted in enhanced current inhibition by external MTSEA. External MTSET partially blocked channels with cysteine substitutions at beta Gln(523), beta Phe(524), and beta Trp(527). MTSET did not inhibit alpha beta G525C gamma, although previous studies showed that channels with cysteine substitutions at the corresponding sites within the alpha- and gamma-subunits were blocked by MTSET. Our results, placed in context with previous observations, suggest that pore regions from the three ENaC subunits have an asymmetric organization.


Subject(s)
Ethyl Methanesulfonate/analogs & derivatives , Sodium Channels/chemistry , Amiloride/pharmacology , Amino Acid Sequence , Animals , Binding Sites , Cations , Cysteine/chemistry , Cysteine/metabolism , DNA, Complementary/metabolism , Dose-Response Relationship, Drug , Electrophysiology , Epithelial Sodium Channels , Ethyl Methanesulfonate/pharmacology , Indicators and Reagents/pharmacology , Kinetics , Lithium/pharmacology , Mice , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Oocytes/metabolism , Potassium/metabolism , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Serine/metabolism , Sodium/metabolism , Sodium/pharmacology , Sodium Channels/metabolism , Time Factors , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...