Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Brief Funct Genomics ; 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555497

ABSTRACT

This project investigates if third-generation genomic sequencing can be used to identify the species of bacteria causing prosthetic joint infections (PJIs) at the time of revision surgery. Samples of prosthetic fluid were taken during revision surgery from patients with known PJIs. Samples from revision surgeries from non-infected patients acted as negative controls. Genomic sequencing was performed using the MinION device and the rapid sequencing kit from Oxford Nanopore Technologies. Bioinformatic analysis pipelines to identify bacteria included Basic Local Alignment Search Tool, Kraken2 and MinION Detection Software, and the results were compared with standard of care microbiological cultures. Furthermore, there was an attempt to predict antibiotic resistance using computational tools including ResFinder, AMRFinderPlus and Comprehensive Antibiotic Resistance Database. Bacteria identified using microbiological cultures were successfully identified using bioinformatic analysis pipelines. Nanopore sequencing and genomic classification could be completed in the time it takes to perform joint revision surgery (2-3 h). Genomic sequencing in this study was not able to predict antibiotic resistance in this time frame, this is thought to be due to a short-read length and low read depth. It can be concluded that genomic sequencing can be useful to identify bacterial species in infected joint replacements. However, further work is required to investigate if it can be used to predict antibiotic resistance within clinically relevant timeframes.

2.
Toxics ; 11(9)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37755789

ABSTRACT

Polycyclic aromatic hydrocarbons are ubiquitous air pollutants, with additional widespread exposure in the diet. PAH exposure has been linked to adverse birth outcomes and long-term neurological consequences. To understand genetic differences that could affect susceptibility following developmental exposure to polycyclic aromatic hydrocarbons, we exposed mice with variations in the aryl hydrocarbon receptor and the three CYP1 enzymes from gestational day 10 (G10) to weaning at postnatal day 25 (P25). We found unexpectedly high neonatal lethality in high-affinity AhrbCyp1b1(-/-) knockout mice compared with all other genotypes. Over 60% of BaP-exposed pups died within their first 5 days of life. There was a significant effect of BaP on growth rates in surviving pups, with lower weights observed from P7 to P21. Again, AhrbCyp1b1(-/-) knockout mice were the most susceptible to growth retardation. Independent of treatment, this line of mice also had impaired development of the surface righting reflex. We used high-resolution mass spectrometry to measure BaP and metabolites in tissues from both dams and pups. We found the highest BaP levels in adipose from poor-affinity AhrdCyp1a2(-/-) dams and identified three major BaP metabolites (BaP-7-OH, BaP-9-OH, and BaP-4,5-diol), but our measurements were limited to a single time point. Future work is needed to understand BaP pharmacokinetics in the contexts of gestation and lactation and how differential metabolism leads to adverse developmental outcomes.

3.
Orthop J Sports Med ; 11(9): 23259671231193380, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37693808

ABSTRACT

Background: Treatment decisions for cartilage defects are often based on lesion size. Magnetic resonance imaging (MRI) is widely used to diagnose cartilage defects noninvasively; however, their size estimated from MRI may differ from defect sizes measured during arthrotomy, especially after debridement to healthy cartilage if undergoing autologous chondrocyte implantation. Purpose/Hypothesis: The purpose of this study was to evaluate the reliability of 2 methods to assess knee cartilage defect size on preoperative MRI and determine their accuracy in predicting postdebridement defect sizes recorded during arthrotomy. It was hypothesized that defect size would be predicted more accurately by the total area of abnormal articular cartilage rather than the area of full-thickness cartilage loss as identified on MRI. Study Design: Cohort study (diagnosis); Level of evidence, 3. Methods: This study included 64 patients (mean age, 41.8 ± 9.6 years) who underwent autologous cell therapy. Each patient received a 3-T MRI at 6.1 ± 3.0 weeks before cell implantation. Three raters, a radiologist, a surgeon, and a scientist, measured (1) the full-thickness cartilage defect area and (2) the total predicted abnormal cartilage area, identified by an abnormal signal on MRI. Interrater reliability was assessed using the intraclass correlation coefficient (ICC). Actual pre- and postdebridement defect sizes were obtained from intraoperative surgical notes. Postdebridement surgical measurements were considered the clinical reference standard and were compared with the radiologist's MRI measurements. Results: Eighty-seven defects were assessed, located on the lateral (n = 8) and medial (n = 26) femoral condyle, trochlea (n = 17), and patella (n = 36). The interrater reliability of the cartilage defect measurements on MRI was good to excellent for the full-thickness cartilage defect area (ICC = 0.74) and the total predicted abnormal cartilage area (ICC = 0.78). The median full-thickness cartilage defect area on MRI underestimated the median postdebridement defect area by 78.3%, whereas the total predicted abnormal cartilage area measurement underestimated the postdebridement defect area by 14.3%. Conclusion: Measuring the full-thickness cartilage defect area on MRI underestimated the area to treat, whereas measuring the total abnormal area provided a better estimate of the actual defect size for treatment.

4.
Tissue Eng Part C Methods ; 29(9): 424-437, 2023 09.
Article in English | MEDLINE | ID: mdl-37395490

ABSTRACT

Allogeneic chondrocyte therapies need to be developed to allow more individuals to be treated with a cell therapy for cartilage repair and to reduce the burden and cost of the current two-stage autologous procedures. Upscale manufacture of chondrocytes using a bioreactor could help provide an off-the-shelf allogeneic chondrocyte therapy with many doses being produced in a single manufacturing run. In this study, we assess a good manufacturing practice-compliant hollow-fiber bioreactor (Quantum®) for adult chondrocyte manufacture. Chondrocytes were isolated from knee arthroplasty-derived cartilage (n = 5) and expanded in media supplemented with 10% fetal bovine serum (FBS) or 5% human platelet lysate (hPL) on tissue culture plastic (TCP) for a single passage. hPL-supplemented cultures were then expanded in the Quantum bioreactor for a further passage. Matched, parallel cultures in hPL or FBS were maintained on TCP. Chondrocytes from all culture conditions were characterized in terms of growth kinetics, morphology, immunoprofile, chondrogenic potential (chondrocyte pellet assays), and single telomere length analysis. Quantum expansion of chondrocytes resulted in 86.4 ± 38.5 × 106 cells in 8.4 ± 1.5 days, following seeding of 10.2 ± 3.6 × 106 cells. This related to 3.0 ± 1.0 population doublings in the Quantum bioreactor, compared with 2.1 ± 0.6 and 1.3 ± 1.0 on TCP in hPL- and FBS-supplemented media, respectively. Quantum- and TCP-expanded cultures retained equivalent chondropotency and mesenchymal stromal cell marker immunoprofiles, with only the integrin marker, CD49a, decreasing following Quantum expansion. Quantum-expanded chondrocytes demonstrated equivalent chondrogenic potential (as assessed by ability to form and maintain chondrogenic pellets) with matched hPL TCP populations. hPL manufacture, however, led to reduced chondrogenic potential and increased cell surface positivity of integrins CD49b, CD49c, and CD51/61 compared with FBS cultures. Quantum expansion of chondrocytes did not result in shortened 17p telomere length when compared with matched TCP cultures. This study demonstrates that large numbers of adult chondrocytes can be manufactured in the Quantum hollow-fiber bioreactor. This rapid, upscale expansion does not alter chondrocyte phenotype when compared with matched TCP expansion. Therefore, the Quantum provides an attractive method of manufacturing chondrocytes for clinical use. Media supplementation with hPL for chondrocyte expansion may, however, be unfavorable in terms of retaining chondrogenic capacity.


Subject(s)
Chondrocytes , Hematopoietic Stem Cell Transplantation , Adult , Humans , Cartilage , Cells, Cultured , Extracellular Matrix/metabolism , Cell Differentiation , Cell Proliferation
5.
Cureus ; 15(5): e38788, 2023 May.
Article in English | MEDLINE | ID: mdl-37303456

ABSTRACT

There is currently no "gold-standard" method to diagnose prosthetic joint infections (PJI), and the current practice of using microbiological cultures has many limitations. The identification of the bacterial species causing the infection is crucial to guide treatment; therefore, a robust method needs to be developed. Here, we attempt to use genomic sequencing with the MinION device from Oxford Nanopore Technologies to identify the species of bacteria causing PJI in a 61-year-old male. Genomic sequencing with the MinION presents an opportunity to produce species identification in real-time and at a smaller cost than current methods. By comparing results with standard hospital microbiological cultures, this study suggests that nanopore sequencing using the MinION could be a faster and more sensitive method to diagnose PJI than microbiological cultures.

6.
Cytotherapy ; 25(10): 1017-1026, 2023 10.
Article in English | MEDLINE | ID: mdl-37162433

ABSTRACT

The Quantum cell expansion system manufactured by Terumo-BCT is perhaps the most widely reported Good Manufacturing Practice-compliant bioreactor used for the expansion of adherent cell populations, both for research purposes and clinical cell-based therapies/trials. Although the system was originally designed for adherent cell expansion, more recently suspension cultures and extracellular vesicle manufacturing protocols have been published using the Quantum system. Cell therapy research and regenerative medicine in general is a rapidly expanding field and as such it is likely that the use of this system will become even more widespread and perhaps mandatory, for both research and development and in the clinic. The purpose of this review is to describe, compare and discuss the diverse range of research and clinical applications currently using the Quantum system, which to our knowledge has not previously been reviewed. In addition, current and future challenges will also be discussed.


Subject(s)
Cell Culture Techniques , Mesenchymal Stem Cells , Cell Culture Techniques/methods , Bioreactors , Cell- and Tissue-Based Therapy , Cell Proliferation
7.
Emerg Top Life Sci ; 5(4): 575-589, 2021 10 29.
Article in English | MEDLINE | ID: mdl-34423830

ABSTRACT

Regenerative medicine, using cells as therapeutic agents for the repair or regeneration of tissues and organs, offers great hope for the future of medicine. Cell therapy for treating defects in articular cartilage has been an exemplar of translating this technology to the clinic, but it is not without its challenges. These include applying regulations, which were designed for pharmaceutical agents, to living cells. In addition, using autologous cells as the therapeutic agent brings additional costs and logistical challenges compared with using allogeneic cells. The main cell types used in treating chondral or osteochondral defects in joints to date are chondrocytes and mesenchymal stromal cells derived from various sources such as bone marrow, adipose tissue or umbilical cord. This review discusses some of their biology and pre-clinical studies before describing the most pertinent clinical trials in this area.


Subject(s)
Cartilage, Articular , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Cell- and Tissue-Based Therapy , Tissue Engineering
8.
Cells ; 10(8)2021 08 06.
Article in English | MEDLINE | ID: mdl-34440768

ABSTRACT

Human umbilical cord (hUC)- or bone marrow (hBM)-derived mesenchymal stromal cells (MSCs) were evaluated as an allogeneic source of cells for cartilage repair. We aimed to determine if they could enhance healing of chondral defects with or without the recruitment of endogenous cells. hMSCs were applied into a focal joint surface injury in knees of adult mice expressing tdTomato fluorescent protein in cells descending from Gdf5-expressing embryonic joint interzone cells. Three experimental groups were used: (i) hUC-MSCs, (ii) hBM-MSCs and (iii) PBS (vehicle) without cells. Cartilage repair was assessed after 8 weeks and tdTomato-expressing cells were detected by immunostaining. Plasma levels of pro-inflammatory mediators and other markers were measured by electrochemiluminescence. Both hUC-MSC (n = 14, p = 0.009) and hBM-MSC (n = 13, p = 0.006) treatment groups had significantly improved cartilage repair compared to controls (n = 18). While hMSCs were not detectable in the repair tissue at 8 weeks post-implantation, increased endogenous Gdf5-lineage cells were detected in repair tissue of hUC-MSC-treated mice. This xenogeneic study indicates that hMSCs enhance intrinsic cartilage repair mechanisms in mice. Hence, hMSCs, particularly the more proliferative hUC-MSCs, could represent an attractive allogeneic cell population for treating patients with chondral defects and perhaps prevent the onset and progression of osteoarthritis.


Subject(s)
Bone Marrow Transplantation , Cartilage, Articular/pathology , Chondrogenesis , Joint Diseases/surgery , Mesenchymal Stem Cell Transplantation , Wound Healing , Adult , Animals , Bioreactors , Cartilage, Articular/injuries , Cartilage, Articular/metabolism , Cell Differentiation , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Female , Humans , Inflammation Mediators/blood , Joint Diseases/metabolism , Joint Diseases/pathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Pregnancy , Transplantation, Heterologous , Umbilical Cord/cytology , Young Adult
9.
Am J Sports Med ; 49(6): 1512-1523, 2021 05.
Article in English | MEDLINE | ID: mdl-33787363

ABSTRACT

BACKGROUND: Biomarkers are needed to predict clinical outcomes for microfracture and osteotomy surgeries to ensure patients can be better stratified to receive the most appropriate treatment. PURPOSE: To identify novel biomarker candidates and to investigate the potential of a panel of protein biomarkers for the prediction of clinical outcome after treatment with microfracture or osteotomy. STUDY DESIGN: Descriptive laboratory study. METHODS: To identify novel candidate biomarker proteins, we used label-free quantitation after liquid chromatography-tandem mass spectrometry of dynamic range-compressed synovial fluids (SFs) from individuals who responded excellently or poorly (based on change in Lysholm score) to microfracture (n = 6) or osteotomy (n = 7). Biomarkers that were identified in this proteomic analysis or that relate to osteoarthritis (OA) severity or have predictive value in another early OA therapy (autologous cell implantation) were measured in the SF of 19 and 13 patients before microfracture or osteotomy, respectively, using commercial immunoassays, and were normalized to urea. These were aggrecanase-1 (ADAMTS-4), cartilage oligomeric matrix protein (COMP), hyaluronan (HA), lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), matrix metalloproteinase 1 and 3, soluble CD14, S100 calcium binding protein A13, and 14-3-3 protein theta (YWHAQ). Levels of COMP and HA were also measured in the plasma of these patients. To find predictors of postoperative function, multivariable regression analyses were performed. RESULTS: Proteomic analyses highlighted YWHAQ and LYVE-1 as being differentially abundant between the clinical responders/improvers and nonresponders after microfracture. A linear regression model after backward variable selection could relate preoperative concentrations of SF proteins (HA, YWHAQ, LYVE-1), activity of ADAMTS-4, and patient demographic characteristics (smoker status and sex) with Lysholm score 12 months after microfracture. Further, a generalized linear model with elastic net penalization indicated that lower preoperative activity of ADAMTS-4 in SF, being a nonsmoker, and being younger at the time of operation were indicative of a higher postoperative Lysholm score (improved joint function) after osteotomy surgery. CONCLUSION: We have identified biomarkers and generated regression models with the potential to predict clinical outcome in patients treated with microfracture or osteotomy of the knee. CLINICAL RELEVANCE: Candidate protein biomarkers identified in this study have the potential to help determine which patients will be best suited to treatment with microfracture or osteotomy.


Subject(s)
Fractures, Stress , Osteoarthritis, Knee , Biomarkers , Humans , Knee Joint , Osteotomy , Proteomics , Synovial Fluid
10.
Cell Transplant ; 28(7): 924-931, 2019 07.
Article in English | MEDLINE | ID: mdl-31066291

ABSTRACT

Autologous chondrocyte implantation (ACI) has been used to treat cartilage defects for >20 years, with promising clinical outcomes. Here, we report two first-in-man cases (patient A and B) treated with combined autologous chondrocyte and bone marrow mesenchymal stromal cell implantation (CACAMI), with 8-year follow up. Two patients with International Cartilage Repair Society (ICRS) grade III-IV cartilage lesions underwent a co-implantation of autologous chondrocytes and bone marrow-derived mesenchymal stromal cells (BM-MSCs) between February 2008 and October 2009. In brief, chondrocytes and BM-MSCs were separately isolated and culture-expanded in a good manufacturing practice laboratory for a period of 2-4 weeks. Cells were then implanted in combination into cartilage defects and patients were clinically evaluated preoperatively and postoperatively, using the self-reported Lysholm knee score and magnetic resonance imaging (MRI). Postoperative Lysholm scores were compared with the Oswestry risk of knee arthroplasty (ORKA) scores. Patient A also had a second-look arthroscopy, at which time a biopsy of the repair site was taken. Both patients demonstrated a significant long-term improvement in knee function, with postoperative Lysholm scores being consistently higher than ORKA predictions. The most recent Lysholm scores, 8 years after surgery were 100/100 (Patient A) and 88/100 (Patient B), where 100 represents a fully functioning knee joint. Bone marrow lesion (BML) volume was shown to decrease on postoperative MRIs in both patients. Cartilage defect area increased in patient A, but declined initially for patient B, slightly increasing again 2 years after treatment. The repair site biopsy taken from patient A at 14 months postoperatively, demonstrated a thin layer of fibrocartilage covering the treated defect site. The use of a combination of cultured autologous chondrocytes and BM-MSCs appears to confer long-term benefit in this two-patient case study. Improvements in knee function perhaps relate to the observed reduction in the size of the BML.


Subject(s)
Chondrocytes/transplantation , Knee Joint/cytology , Knee Joint/surgery , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Aged , Bone Marrow Cells/cytology , Chondrocytes/cytology , Humans , Magnetic Resonance Imaging , Male
11.
Cartilage ; 10(4): 467-479, 2019 10.
Article in English | MEDLINE | ID: mdl-29671342

ABSTRACT

OBJECTIVE: To assess the phenotype of human articular chondrocytes cultured in normoxia (21% O2) or continuous hypoxia (2% O2). DESIGN: Chondrocytes were extracted from patients undergoing total knee replacement (n = 5) and cultured in ~21% (normoxic chondrocytes, NC) and 2% (hypoxic chondrocytes, HC) oxygen in both monolayer and 3-dimensional (3D) pellet culture and compared with freshly isolated chondrocytes (FC). Cells were assessed by flow cytometry for markers indicative of mesenchymal stromal cells (MSCs), chondrogenic-potency and dedifferentiation. Chondrogenic potency and immunomodulatory gene expression was assessed in NC and HC by reverse transcription quantitative polymerase chain reaction. Immunohistochemistry was used to assess collagen II production following 3D pellet culture. RESULTS: NC were positive (>97%, n = 5) for MSC markers, CD73, CD90, and CD105, while HC demonstrated <90% positivity (n = 4) and FC (n = 5) less again (CD73 and CD90 <20%; CD105 <40%). The markers CD166 and CD151, indicative of chondrogenic de-differentiation, were significantly higher on NC compared with HC and lowest on FC. NC also produced the highest levels of CD106 and showed the greatest levels of IDO expression, following interferon-γ stimulation, indicating immunomodulatory potential. NC produced the highest levels of CD49c (>60%) compared with HC and FC in which production was <2%. Hypoxic conditions upregulated expression of SOX9, frizzled-related protein (FRZB), fibroblast growth factor receptor 3 (FGFR3), and collagen type II (COL2A1) and downregulated activin receptor-like kinase 1 (ALK1) in 3 out of 4 patients compared with normoxic conditions for monolayer cells. CONCLUSIONS: Hypoxic conditions encourage retention of a chondrogenic phenotype with some immunomodulatory potential, whereas normoxia promotes dedifferentiation of chondrocytes toward an MSC phenotype with loss of chondrogenic potency but enhanced immunomodulatory capacity.


Subject(s)
Cartilage, Articular/cytology , Cell Hypoxia/physiology , Chondrocytes/cytology , Immunomodulation/physiology , Aged , Cartilage, Articular/immunology , Cartilage, Articular/metabolism , Cell Culture Techniques/methods , Cell Dedifferentiation/physiology , Cell Hypoxia/immunology , Cell Separation/methods , Cells, Cultured , Chondrocytes/immunology , Chondrocytes/metabolism , Chondrogenesis/genetics , Chondrogenesis/physiology , Collagen Type II/metabolism , Female , Flow Cytometry/methods , Gene Expression/physiology , Humans , Immunophenotyping/methods , Interferon-gamma/immunology , Male , Mesenchymal Stem Cells/cytology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...