Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
A A Pract ; 17(12): e01734, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38126900

ABSTRACT

Anesthesiologists should be aware of the coagulation implications of therapeutic plasma exchange (TPE) with albumin replacement for desensitization of kidney transplant (KT) recipients. We describe a case where the final preoperative TPE was performed with albumin. A TEGR 6s demonstrated defects in fibrinogen component to clot strength. With surgical oozing noted and the fibrinogen defect, cryoprecipitate was administered. Thereafter, fibrinogen contribution to clot strength normalized, coinciding with clinical hemostasis. With the increased use of TPE to reduce antibodies in KT recipients, visco-elastic testing may assist in the identification of coagulation defects when plasma is not used as replacement fluid.


Subject(s)
Hemostatics , Kidney Transplantation , Humans , Plasma Exchange , Blood Coagulation , Albumins/therapeutic use , Fibrinogen/therapeutic use
2.
Front Pain Res (Lausanne) ; 3: 1088097, 2022.
Article in English | MEDLINE | ID: mdl-36713642

ABSTRACT

Vertebral plana fractures are a severe form of compression fractures that can cause significant morbidity due to incapacitating pain. Due to the flattening of the vertebrae in a plana fracture, accessing the vertebral body transpedicularly can be difficult, making traditional vertebral augmentation treatment dangerous. These injuries also typically occur in elderly patients with contraindications to invasive procedures. Peripheral nerve stimulation is a relatively new and minimally invasive treatment that uses electrical stimulation to inhibit pain signals from reaching the somatosensory cortex. Our case describes an 80 Year old female with multiple comorbidities and refractory pain due to a vertebral planar fracture successfully treated with a 60 day course of peripheral nerve stimulation as evidenced by over 50% reduction in symptoms and discontinuation of opioid pain medication use.

3.
Alcohol Clin Exp Res ; 40(5): 945-54, 2016 05.
Article in English | MEDLINE | ID: mdl-27084498

ABSTRACT

BACKGROUND: The nociceptin/orphanin-FQ (or opioid receptor-like [ORL1]) receptor (NOP) is localized in the mesolimbic reward pathway and has been suggested to play a role in feeding, mood, stress, and addiction. Since its deorphanization in 1995, there has been a clear dichotomy in the literature regarding whether an agonist or antagonist would provide therapeutic benefit. Specifically, the literature reports indicate that NOP receptor antagonists produce efficacy in animal models of hyperphagia and antidepressant-like activity, whereas NOP agonists produce anxiolytic-like effects and dampen reward/addiction behaviors including ethanol consumption. METHODS: We characterize here the potent, orally bioavailable NOP antagonist, LY2940094, in rodent models of ethanol consumption, including ethanol self-administration, progressive ratio operant self-administration, stress-induced reinstatement of ethanol seeking, and in vivo microdialysis in the nucleus accumbens. RESULTS: LY2940094 dose dependently reduced homecage ethanol self-administration in Indiana alcohol-preferring (P) and Marchigian Sardinian alcohol-preferring (msP) rats, without affecting food/water intake or locomotor activity. Reduced ethanol intake in P rats did not show significant tolerance over 4 days of subchronic dosing. LY2940094 attenuated progressive ratio operant responding and break points for ethanol in P rats. Moreover, stress-induced reinstatement of ethanol seeking in msP rats was completely blocked by LY2940094. Furthermore, LY2940094 blocked ethanol-stimulated dopamine release in response to ethanol challenge (1.1 g/kg, intraperitoneally). CONCLUSIONS: Our findings demonstrate for the first time that blockade of NOP receptors attenuates ethanol self-administration and ethanol-motivated behaviors, stress-induced ethanol seeking, and ethanol-induced stimulation of brain reward pathways in lines of rats that exhibit excessive ethanol consumption. Results suggest that LY2940094 may have potential therapeutic utility in treating alcohol addiction.


Subject(s)
Drug-Seeking Behavior/drug effects , Ethanol/antagonists & inhibitors , Pyrans/pharmacology , Receptors, Opioid/drug effects , Spiro Compounds/pharmacology , Administration, Oral , Animals , Conditioning, Operant/drug effects , Dopamine/metabolism , Dose-Response Relationship, Drug , Ethanol/administration & dosage , Female , Male , Microdialysis , Narcotic Antagonists/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Pyrans/administration & dosage , Rats , Rats, Inbred Strains , Self Administration , Spiro Compounds/administration & dosage , Nociceptin Receptor
4.
Neuropharmacology ; 99: 1-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26100446

ABSTRACT

The interactions between the glutamatergic and the histaminergic systems in the brain are not fully understood. Here we studied histamine release in the medial prefrontal cortex and the posterior hypothalamus-tuberomamillary nucleus (PH-TMN) using in vivo microdialysis and electrophysiological recordings of histaminergc neurons in the PH-TMN in vivo to further address the mechanistic details of these interactions. We demonstrated that histaminergic activity was regulated by group II metabotropic glutamate receptors (mGluR 2 and 3) using systemic dosing with mGluR 2/3 agonist and antagonists and an mGluR 2 positive allosteric modulator. These interactions likely occur via direct modulation of glutamate release in the PH-TMN. The importance of circadian rhythm for histamine release was also shown using microdialysis studies with mGluR 2/3 compounds under light and dark conditions. Based on histamine release studies with NMDA and ketamine, we propose the existence of two sub-populations of NMDA receptors where one subtype is located on histaminergic cell bodies in the PH-TMN and the second on GABA-ergic neurons projecting to the PH-TMN. These subpopulations could be distinguished based on function, notably opposing actions were seen on histamine release in the medial prefrontal cortex of the rat. In summary, this paper provides evidence that the histaminergic system is closely regulated by glutamate neurons in multiple ways. In addition, this interaction depends to a great extent on the activity state of the subject.


Subject(s)
Brain/physiology , Glutamic Acid/metabolism , Histamine/metabolism , Neurons/physiology , Receptors, Metabotropic Glutamate/metabolism , Animals , Brain/drug effects , Circadian Rhythm/physiology , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Male , Microdialysis , Microelectrodes , Neurons/drug effects , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , gamma-Aminobutyric Acid/metabolism
5.
J Emerg Med ; 48(4): 450-7, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25497897

ABSTRACT

BACKGROUND: Ultrasound (US) measurement of the optic nerve sheath diameter (ONSD) has been utilized as an indirect assessment of intracranial pressure. It is usually performed by trained ultrasonographers. OBJECTIVES: To evaluate whether or not emergency physicians (EP) are capable of measuring the ONSD accurately by US. MATERIALS AND METHODS: A retrospective measurement of ONSD was conducted on computed tomography (CT) scans of the head or facial bones. These patients had undergone ocular US performed by EPs prior to CT scanning. The CT scan measurements of ONSD read by a board-certified radiologist were compared with that of the US read by a registered diagnostic medical sonographer. A difference in measurements of the ONSD ≥ 0.5 mm between the two modalities was considered as significant for this study. RESULTS: The ONSD measurements were performed with CT scan and compared to that of the US. Of the 61 patients studied, 36 (59%) were male and 25 (41%) were female. The average age was 56 ± 17 years. All but 4 patients had ONSD measurements that were between 5 and 6 mm [Corrected]. Discrepancy in measurements of the ONSD between US and CT for both groups fell within our predetermined value (0.5 mm) for the majority of cases. None of the measurements were above 6 mm. The intraclass correlation coefficient was 0.9 (95% confidence interval 0.8846-0.9303). CONCLUSION: Emergency physicians were capable of accurately measuring the ONSD using bedside US. Prospective studies with a larger sample size are recommended to validate these findings.


Subject(s)
Emergency Service, Hospital/statistics & numerical data , Intracranial Hypertension/diagnosis , Intracranial Pressure/physiology , Optic Nerve/diagnostic imaging , Adult , Aged , Clinical Competence , Female , Humans , Linear Models , Male , Middle Aged , Retrospective Studies , Sensitivity and Specificity , Tomography, X-Ray Computed , Ultrasonography
7.
Front Psychiatry ; 3: 49, 2012.
Article in English | MEDLINE | ID: mdl-22629251

ABSTRACT

Atypical antipsychotics such as clozapine and olanzapine have been shown to enhance histamine turnover and this effect has been hypothesized to contribute to their improved therapeutic profile compared to typical antipsychotics. In the present study, we examined the effects of antipsychotic drugs on histamine (HA) efflux in the mPFC of the rat by means of in vivo microdialysis and sought to differentiate the receptor mechanisms which underlie such effects. Olanzapine and clozapine increased mPFC HA efflux in a dose related manner. Increased HA efflux was also observed after quetiapine, chlorpromazine, and perphenazine treatment. We found no effect of the selective 5-HT(2A) antagonist MDL100907, 5-HT(2c) antagonist SB242084, or the 5-HT(6) antagonist Ro 04-6790 on mPFC HA efflux. HA efflux was increased following treatment with selective H(1) receptor antagonists pyrilamine, diphenhydramine, and triprolidine, the H(3) receptor antagonist ciproxifan and the mixed 5-HT(2A)/H(1) receptor antagonist ketanserin. The potential novel antipsychotic drug FMPD, which has a lower affinity at H(1) receptors than olanzapine, did not affect HA efflux. Similarly, other antipsychotics with lower H(1) receptor affinity (risperidone, aripiprazole, and haloperidol) were also without effect on HA efflux. Finally, HA efflux after antipsychotic treatment was significantly correlated with affinity at H(1) receptors whereas nine other receptors, including 5-HT(2A), were not. These results demonstrate that both typical and atypical antipsychotics increase mPFC histamine efflux and this effect may be mediated via antagonism of histamine H(1) receptors.

8.
Psychopharmacology (Berl) ; 219(4): 959-70, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21847569

ABSTRACT

RATIONALE: Accumulating evidence suggests that the primary symptoms of schizophrenia may be associated with altered central glutamate transmission. LY2140023 monohydrate is the methionine prodrug of the selective mGlu(2/3) receptor agonist LY404039 and is currently being assessed for the treatment of schizophrenia. OBJECTIVE: The objective of this study was to evaluate the central pharmacological activity of LY2140023 monohydrate in preclinical and clinical studies. METHODS: Effects on neurotransmitter/metabolite concentrations were assessed in male rats following single oral doses of LY2140023 monohydrate (microdiasylates from the prefrontal cortex), single intraperitoneal injection of LY404039 [cerebrospinal fluid (CSF)], or LY2140023 monohydrate dosed once daily for 7 days (CSF). A clinical study in 16 healthy subjects assessed the effects of LY2140023 monohydrate 40 mg orally twice daily for 14 days in lumbar CSF. RESULTS: Rat studies: Acute dosing with LY2140023 monohydrate resulted in significant dose-dependent increases in extracellular concentrations of dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), but not 5-hydroxyindoleacetic acid (5-HIAA), in the prefrontal cortex. LY2140023 monohydrate dosing for 7 days elevated the concentrations of HVA in CSF, while acutely dosed LY404039 increased the concentrations of DOPAC, HVA, and methoxy-hydroxyphenylglycol (MHPG), but not 5-HIAA. Clinical study: Significant increases were seen for DOPAC, HVA, 5-HIAA, and MHPG in the CSF of subjects receiving LY2140023 monohydrate, but not placebo. CONCLUSIONS: LY2140023 monohydrate and/or LY404039 dosing potently affected dopamine turnover and also significantly affected serotonin turnover in the human and rat central nervous systems. The measurement of biogenic amine metabolites such as DOPAC and HVA may serve as useful biomarkers of LY2140023 monohydrate and/or LY404039 central pharmacodynamic activity.


Subject(s)
Amino Acids/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cyclic S-Oxides/pharmacology , Receptors, Metabotropic Glutamate/agonists , 3,4-Dihydroxyphenylacetic Acid/cerebrospinal fluid , 3,4-Dihydroxyphenylacetic Acid/metabolism , Adult , Amino Acids/administration & dosage , Animals , Biomarkers, Pharmacological/metabolism , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Cyclic S-Oxides/administration & dosage , Dopamine/metabolism , Dose-Response Relationship, Drug , Homovanillic Acid/cerebrospinal fluid , Homovanillic Acid/metabolism , Humans , Injections, Intraperitoneal , Male , Microdialysis , Prodrugs , Rats , Rats, Sprague-Dawley , Serotonin/metabolism , Single-Blind Method , Young Adult
9.
J Neurosci Res ; 90(3): 588-96, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22038504

ABSTRACT

Orexinergic neurons are discretely localized within the lateral hypothalamus and have widespread projections to the whole brain. Here, the role of orexin/hypocretin-2 receptors (OX2) in modulating extracellular concentrations of neurotransmitters was evaluated in the hypothalamus and the prefrontal cortex (PFC) of OX2 knockout (KO) mice by using a microdialysis technique. In the hypothalamus, basal concentrations of norephinephrine (NE), acetylcholine (ACh), and histamine (Hist) were significantly higher in KO mice, whereas KCl perfusion (147 mM) resulted in significantly lesser increases in NE, ACh, and Hist release in KO compared with wild-type (WT) mice. No differences in basal concentrations or evoked release of serotonin (5-HT) or dopamine (DA) were found in the hypothalamus between genotypes. In the PFC, no differences in the basal concentrations of the studied neurotransmitters were found between genotypes. After KCl perfusion, significantly higher increases in NE, 5-HT, and DA release were found in KO compared with WT mice. No differences in the evoked release of ACh and Hist in the PFC were found between genotypes. The present results demonstrate that genetic deletion of OX2 receptors differentially modulates extracellular concentrations of distinct neurotransmitters in the somatodendritic region vs. a nerve terminal region of the orexinergic neurons. In the hypothalamus, an inhibitory role of the OX2 receptors in modulating basal concentrations of NE, ACh, and Hist was revealed, which probably accounts for the reduced responsiveness to KCl as well. In the PFC, the evoked release of the monoamines NE, 5-HT, and DA seems to be controlled negatively by OX2 receptors.


Subject(s)
Hypothalamus/physiology , Prefrontal Cortex/physiology , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Synaptic Transmission/physiology , Acetylcholine/metabolism , Animals , Dopamine/metabolism , Histamine/metabolism , Mice , Mice, Knockout , Microdialysis , Norepinephrine/metabolism , Orexin Receptors , Receptors, G-Protein-Coupled/genetics , Receptors, Neuropeptide/genetics , Serotonin/metabolism , Synaptic Transmission/genetics
10.
J Pharmacol Exp Ther ; 336(1): 165-77, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20947638

ABSTRACT

The normalization of excessive glutamatergic neurotransmission through the activation of metabotropic glutamate 2 (mGlu2) receptors may have therapeutic potential in a variety of psychiatric disorders, including anxiety/depression and schizophrenia. Here, we characterize the pharmacological properties of N-(4-((2-(trifluoromethyl)-3-hydroxy-4-(isobutyryl)phenoxy)methyl)benzyl)-1-methyl-1H-imidazole-4-carboxamide (THIIC), a structurally novel, potent, and selective allosteric potentiator of human and rat mGlu2 receptors (EC(50) = 23 and 13 nM, respectively). THIIC produced anxiolytic-like efficacy in the rat stress-induced hyperthermia assay and the mouse stress-induced elevation of cerebellar cGMP and marble-burying assays. THIIC also produced robust activity in three assays that detect antidepressant-like activity, including the mouse forced-swim test, the rat differential reinforcement of low rate 72-s assay, and the rat dominant-submissive test, with a maximal response similar to that of imipramine. Effects of THIIC in the forced-swim test and marble burying were deleted in mGlu2 receptor null mice. Analysis of sleep electroencephalogram (EEG) showed that THIIC had a sleep-promoting profile with increased non-rapid eye movement (REM) and decreased REM sleep. THIIC also decreased the dark phase increase in extracellular histamine in the medial prefrontal cortex and decreased levels of the histamine metabolite tele-methylhistamine (t-MeHA) in rat cerebrospinal fluid. Collectively, these results indicate that the novel mGlu2-positive allosteric modulator THIIC has robust activity in models used to predict anxiolytic/antidepressant efficacy, substantiating, at least with this molecule, differentiation in the biological impact of mGlu2 potentiation versus mGlu2/3 orthosteric agonism. In addition, we provide evidence that sleep EEG and CSF t-MeHA might function as viable biomarker approaches to facilitate the translational development of THIIC and other mGlu2 potentiators.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Benzyl Compounds/pharmacology , Central Nervous System/drug effects , Central Nervous System/metabolism , Excitatory Amino Acid Agonists/pharmacology , Imidazoles/pharmacology , Receptors, Metabotropic Glutamate/agonists , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cell Line , Central Nervous System/chemistry , Cerebellum/chemistry , Cerebellum/drug effects , Cerebellum/metabolism , Drug Synergism , Humans , Male , Mice , Mice, Knockout , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Metabotropic Glutamate/physiology
12.
Neuropharmacology ; 58(3): 632-9, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19951716

ABSTRACT

In the present study we demonstrated that ketamine, an NMDA antagonist and possible psychotomimetic, increases extracellular histamine (HA) in the rat brain. We then examined the ability of the group II mGlu receptor agonist LY379268 to modulate the ketamine evoked increases in HA release in three limbic brain regions. Ketamine (25 mg/kg) increased HA in the medial prefrontal cortex (mPFC), ventral hippocampus (vHipp) and the nucleus accumbens (NAc) shell. LY379268 administered alone was without effect on basal HA efflux in the mPFC or vHipp but modestly decreased HA efflux in the NAc shell. Administration of LY379268 (3 and 10 mg/kg) prior to ketamine significantly attenuated the HA response in the mPFC, vHipp and the NAc shell. The inhibitory effects of LY379268 in the mPFC were mimicked by the systemic administration of the mGlu2 receptor positive allosteric modulator CBiPES (60 mg/kg). Finally, local perfusion experiments revealed that the effects of LY379268 on ketamine evoked HA efflux appear to be mediated by mGlu2 receptors outside the PFC as the intra-mPFC perfusion of LY379268 (100 microM or 300 microM) failed to attenuate ketamine evoked increases in HA efflux. Together, these novel observations reveal an effect of ketamine on histaminergic transmission in limbic brain areas and provide further insight into the possible antipsychotic mechanism of action of mGlu2/3 receptor agonists.


Subject(s)
Histamine/metabolism , Ketamine/pharmacology , Limbic System/drug effects , Limbic System/metabolism , Receptors, Metabotropic Glutamate/metabolism , Amino Acids/pharmacology , Analysis of Variance , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cyclopropanes/pharmacology , Dose-Response Relationship, Drug , Drug Interactions , Electrochemistry/methods , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Indoles/pharmacology , Limbic System/anatomy & histology , Male , Microdialysis/methods , Quinoxalines/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors
13.
J Pharmacol Exp Ther ; 331(3): 1126-36, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19755662

ABSTRACT

Some recently published in vitro studies with two metabotropic glutamate 2/3 receptor (mGluR(2/3)) agonists [(-)-2-oxa-4-aminobicyclo[3.1.0] hexane-4,6-dicarboxylic acid (LY379268) and 1S,2S,5R,6S-2-aminobicyclo[3.1.0]hexane-2,6-bicaroxylate monohydrate (LY354740)] suggest that these compounds may also directly interact with dopamine (DA) D(2) receptors. The current in vitro and in vivo studies were undertaken to further explore this potential interaction with D(2) receptors. LY379268 and LY354740 failed to inhibit D(2) binding in both native striatal tissue homogenates and cloned receptors at concentrations up to 10 microM. LY379268 and LY354740 (up to 10 microM) also failed to stimulate [(35)S]GTPgammaS binding in D(2L)- and D(2S)-expressing clones in the presence of NaCl or N-methyl-d-glucamine. In an in vivo striatal D(2) receptor occupancy assay, LY379268 (3-30 mg/kg) or LY354740 (1-10 mg/kg) failed to displace raclopride (3 microg/kg i.v.), whereas aripiprazole (10-60 mg/kg) showed up to 90% striatal D(2) receptor occupancy. LY379268 (10 mg/kg) and raclopride (3 mg/kg) blocked d-amphetamine and phencyclidine (PCP)-induced hyperactivity in wild-type mice. However, the effects of LY379268 were lost in mGlu(2/3) receptor knockout mice. In DA D(2) receptor-deficient mice, LY379268 but not raclopride blocked both PCP and d-amphetamine-evoked hyperactivity. In the striatum and nucleus accumbens, LY379268 (3 and 10 mg/kg) was without effect on the DA synthesis rate in reserpinized rats and also failed to prevent S-(-)-3-(3-hydroxyphenyl)-N-propylpiperidine-induced reductions in DA synthesis rate. Taken together, the current data fail to show evidence of direct DA D(2) receptor interactions of LY379268 and LY354740 in vitro or in vivo. Instead, these results provide further evidence for a novel antipsychotic mechanism of action for mGluR(2/3) agonists.


Subject(s)
Amino Acids/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds/pharmacology , Cell Membrane/drug effects , Receptors, Dopamine D2/metabolism , Receptors, Metabotropic Glutamate/agonists , Animals , Binding, Competitive , CHO Cells , Cell Membrane/metabolism , Cricetinae , Cricetulus , Domperidone/pharmacology , Dopamine/biosynthesis , Dopamine D2 Receptor Antagonists , Female , Humans , Male , Mice , Mice, Knockout , Motor Activity/drug effects , Protein Binding , Raclopride/pharmacology , Radioligand Assay , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D2/agonists , Receptors, Dopamine D2/genetics , Transfection
14.
Neuropharmacology ; 55(5): 743-54, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18602930

ABSTRACT

Selective inhibitors of the glycine transporter 1 (GlyT1) have been implicated in central nervous system disorders related to hypoglutamatergic function such as schizophrenia. The selective GlyT1 inhibitors ALX5407 (NFPS) and LY2365109 {[2-(4-benzo[1,3]dioxol-5-yl-2-tert-butylphenoxy)ethyl]-methylamino}-acetic acid increased cerebrospinal fluid levels of glycine and potentiated NMDA-induced increases in dialysate levels of neurotransmitters in the prefrontal cortex (PFC) and the striatum. However, higher doses produced both stimulatory and inhibitory effects on motor performance and impaired respiration, suggesting significant involvement of cerebellar and brain stem areas. A dual probe microdialysis study showed that ALX5407 transiently elevated extracellular levels of glycine in the PFC with more sustained increases in the cerebellum. In support of these findings, immuno-staining with pan-GlyT1 and GlyT1a antibodies showed a higher abundance of immunoreactivity in the brain stem/cerebellum as compared to the frontal cortical/hippocampal brain areas in four different species studied, including the mouse, rat, monkey and human. In addition, the inhibitory effects of ALX5407 on cerebellar levels of cGMP in the mouse could be reversed by the glycine A receptor antagonist strychnine but not the glycine B receptor antagonist L-701324. We propose that the adverse events seen with higher doses of ALX5407 and LY2365109 are the result of high GlyT1 inhibitory activity in caudal areas of the brain with sustained elevations of extracellular glycine. High levels of glycine in these brain areas may result in activation of strychnine-sensitive glycine A receptors that are inhibitory on both motor activity and critical brain stem functions such as respiration.


Subject(s)
Behavior, Animal/drug effects , Brain Chemistry/drug effects , Cerebral Cortex/drug effects , Corpus Striatum/drug effects , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Sarcosine/analogs & derivatives , Animals , Cell Line, Tumor , Cyclic GMP/metabolism , Dioxoles/pharmacology , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/pharmacology , Glycine/metabolism , Humans , Male , Mice , Microdialysis/methods , Motor Activity/drug effects , Neuroblastoma , Neurotransmitter Agents/metabolism , Quinolones/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Sarcosine/pharmacology , Time Factors
15.
Psychopharmacology (Berl) ; 193(1): 121-36, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17384937

ABSTRACT

RATIONALE: Data from both preclinical and clinical studies have provided proof of concept that modulation of limbic and forebrain glutamate, via mGlu2/3 receptor agonists, might provide therapeutic benefits in many psychiatric disorders including schizophrenia and anxiety. OBJECTIVE: The aim of this study was to assess the efficacy of a structurally novel, potent, selective mGlu2/3 receptor agonist with improved bioavailability (LY404039) in animal models predictive of antipsychotic and anxiolytic efficacy. MATERIALS AND METHODS: LY404039 was assessed in amphetamine- and phencyclidine-induced hyperlocomotion, conditioned avoidance responding, fear-potentiated startle, marble burying, and rotarod behavioral tests. Monoamine release and turnover were assessed using microdialysis and ex vivo tissue levels. RESULTS: LY404039 attenuated amphetamine- and phencyclidine-induced hyperlocomotion (3-30 and 10 mg/kg, respectively). LY404039 (3-10 mg/kg) inhibited conditioned avoidance responding. LY404039 also reduced fear-potentiated startle in rats (3-30 microg/kg) and marble burying in mice (3-10 mg/kg), indicating anxiolytic-like effects. Importantly, LY404039 did not produce sedative effects or motor impairment as measured by rotarod performance and lack of escape failures in the conditioned avoidance task (at doses up to 30 and 10 mg/kg, respectively). LY404039 (10 mg/kg) also increased dopamine and serotonin release/turnover in the prefrontal cortex. CONCLUSIONS: These results demonstrate the broad preclinical efficacy of LY404039 across multiple animal models of antipsychotic and anxiolytic efficacy. Additionally, this compound modulates mesocortical neurotransmission and provides a novel mechanism for the treatment of psychiatric disorders that may be associated with improved efficacy and reduced incidence of undesirable side effects. As glutamatergic dysfunction has been linked to the etiology of schizophrenia, clinical studies with more potent mGlu2/3 agonists, such as LY404039, may be useful to explore the validity of this hypothesis.


Subject(s)
Behavior, Animal/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cyclic S-Oxides/pharmacology , Mental Disorders/drug therapy , Receptors, Metabotropic Glutamate/agonists , Amino Acids/pharmacology , Amphetamine/pharmacology , Animals , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cyclic S-Oxides/chemistry , Cyclic S-Oxides/therapeutic use , Diazepam/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Mental Disorders/psychology , Mice , Molecular Structure , Motor Activity/drug effects , Phencyclidine/pharmacology , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Xanthenes/pharmacology
16.
Neuropharmacology ; 50(6): 755-60, 2006 May.
Article in English | MEDLINE | ID: mdl-16427661

ABSTRACT

Atomoxetine is a selective inhibitor of norepinephrine transporters and is currently being used in the pharmacotherapy of attention deficit/hyperactivity disorder (ADHD). We have previously shown that atomoxetine increased extracellular (EX) concentrations of norepinephrine and dopamine in prefrontal cortex, but unlike the psychostimulant methylphenidate, did not alter dopamine(EX) in nucleus accumbens or striatum. Using the in vivo microdialysis technique in rat, we investigated the effects of atomoxetine on norepinephrine(EX) and dopamine(EX) concentrations in several other brain regions and also evaluated the role of inhibitory autoreceptors on atomoxetine-induced increases of norepinephrine(EX) concentrations. Atomoxetine (3mg/kg i.p.) increased norepinephrine(EX) robustly in prefrontal cortex, occipital cortex, lateral hypothalamus, dorsal hippocampus and cerebellum, suggesting that norepinephrine(EX) is increased throughout the brain by atomoxetine. In lateral hypothalamus and occipital cortex where dopamine(EX) was quantifiable, atomoxetine did not increase dopamine(EX) concentrations, in contrast to parallel increases of norepinephrine(EX) and dopamine(EX) in prefrontal cortex, indicating a unique effect in prefrontal cortex. Administration of the alpha(2)-adrenergic antagonist idazoxan 1h after atomoxetine resulted in increases in prefrontal cortical norepinephrine efflux greater than either compound alone, indicating an attenuating effect of the adrenergic autoreceptors on norepinephrine efflux.


Subject(s)
Adrenergic Uptake Inhibitors/pharmacology , Brain/drug effects , Dopamine/metabolism , Extracellular Space/drug effects , Norepinephrine/metabolism , Propylamines/pharmacology , Analysis of Variance , Animals , Atomoxetine Hydrochloride , Male , Microdialysis/methods , Rats , Rats, Sprague-Dawley , Time Factors
17.
Nat Rev Drug Discov ; 4(9): 764-74, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16121130

ABSTRACT

In the early 1970s, evidence of the role of serotonin (5-hydroxytryptamine or 5-HT) in depression began to emerge and the hypothesis that enhancing 5-HT neurotransmission would be a viable mechanism to mediate antidepressant response was put forward. On the basis of this hypothesis, efforts to develop agents that inhibit the uptake of 5-HT from the synaptic cleft were initiated. These studies led to the discovery and development of the selective serotonin-reuptake inhibitor fluoxetine hydrochloride (Prozac; Eli Lilly), which was approved for the treatment of depression by the US FDA in 1987. Here, we summarize this research and discuss the many challenges that we encountered during the development of fluoxetine hydrochloride, which has now been widely acknowledged as a breakthrough drug for depression.


Subject(s)
Fluoxetine/history , Depression/drug therapy , Drug Approval/methods , Drug Design , Drug Industry/history , Drug Industry/methods , Fluoxetine/therapeutic use , History, 20th Century , Humans
18.
FASEB J ; 18(12): 1410-2, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15231726

ABSTRACT

Dopaminergic dysfunction is an important pathogenetic factor for brain pathologies such as Parkinson's disease, ADHD, schizophrenia, and addiction as well as for metabolic disorders and anorexia. Dopaminergic neurons projecting from the midbrain to forebrain regions, such as the nucleus accumbens and the prefrontal cortex, regulate motor and cognitive functions and coordinate the patterned response of the organism to sensory, affective, and rewarding stimuli. In this study, we showed that dopaminergic neurotransmission is highly dependent on M4 cholinergic muscarinic receptor function. Using in vivo microdialysis, we found elevated dopamine (DA) basal values and enhanced DA response to psychostimulants in the nucleus accumbens of M4 knockout mice. We also demonstrated impaired homeostatic control of cholinergic activity that leads to increased basal acetylcholine efflux in the midbrain of these animals. Thus, loss of M4 muscarinic receptor control of cholinergic function effectuates a state of dopaminergic hyperexcitability. This may be responsible for pathological conditions, in which appetitive motivation as well as affective and cognitive processing is impaired. We propose that M4 receptor agonists could represent an innovative strategy for the treatment of pathologies associated with hyperdopaminergia.


Subject(s)
Central Nervous System Diseases/pathology , Central Nervous System Diseases/physiopathology , Receptor, Muscarinic M4/metabolism , Synaptic Transmission , Acetylcholine/metabolism , Amphetamine/pharmacology , Animals , Central Nervous System Diseases/drug therapy , Central Nervous System Diseases/metabolism , Dopamine/metabolism , Gene Deletion , Homeostasis/drug effects , Mesencephalon/drug effects , Mesencephalon/metabolism , Mice , Mice, Knockout , Models, Neurological , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M2/metabolism , Receptor, Muscarinic M4/genetics , Scopolamine/pharmacology , Synaptic Transmission/drug effects , Time Factors
19.
J Neurochem ; 88(1): 194-202, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14675163

ABSTRACT

The metabotropic glutamate (mGlu2/3) receptor agonist, LY354740, exhibits anxiolytic-like properties in a number of rodent models. The present study utilized in vivo microdialysis to examine the effects of LY354740 on extracellular monoamine levels in the medial prefrontal cortex (mPFC) of animals subjected to 30 min immobilization stress. Immobilization stress significantly elevated extracellular levels of noradrenaline (NA) and dopamine (DA) in the mPFC, while systemic administration of LY354740 (30 mg/kg, s.c.) significantly attenuated immobilization-induced increases in both NA and DA. Reverse-dialysis of LY354740 (30 microm) into the mPFC significantly attenuated immobilization-induced increases in NA, but not DA without affecting basal levels of either amine. In separate studies in the presence of citalopram (1 microm; reverse dialysis into the mPFC), systemic administration of LY354740 attenuated immobilization-induced increases in NA and DA, but had no effect on serotonin (5-HT) levels. Co-administration of the selective mGlu2/3 receptor antagonist, LY341495, partially or fully reversed the attenuation in NA and DA levels produced by LY354740, respectively. Taken together, these data suggest that LY354740 may produce anti-stress actions, in part, by blocking stress-related increases in catecholamines in the mPFC via mGlu2/3 receptor stimulation.


Subject(s)
Bridged Bicyclo Compounds/pharmacology , Dopamine/metabolism , Norepinephrine/metabolism , Prefrontal Cortex/metabolism , Receptors, Metabotropic Glutamate/agonists , Amino Acids/pharmacology , Animals , Catecholamines/metabolism , Citalopram/pharmacology , Dopamine/analysis , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Extracellular Fluid/chemistry , Extracellular Fluid/metabolism , Male , Microdialysis , Norepinephrine/analysis , Prefrontal Cortex/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/metabolism , Restraint, Physical , Selective Serotonin Reuptake Inhibitors/pharmacology , Stress, Physiological/metabolism , Xanthenes/pharmacology
20.
Neuropharmacology ; 46(2): 232-42, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14680761

ABSTRACT

Clinical studies of patients with treatment-resistant depression have shown that combined treatment with fluoxetine and olanzapine rapidly and significantly improved depressive symptoms. The present study used in vivo microdialysis to investigate the brain regional and dose effects of these drugs on extracellular monoamine concentrations in the rat prefrontal cortex, hypothalamus, nucleus accumbens and striatum. In the prefrontal cortex, the olanzapine/fluoxetine combination (3/10 mg/kg, respectively) increased catecholamine concentrations to a significantly greater extent than either drug alone (dopamine mean+/-S.E.M. percent of baseline: olanzapine (120 +/- 12.4), fluoxetine (123 +/- 6.2), combination (185 +/- 8.8); norepinephrine: olanzapine (124 +/- 7.2), fluoxetine (126 +/- 5.0), combination (215 +/- 15.8)). The combination also increased serotonin concentrations to 156 +/- 11.0% of baseline, but to a lesser extent than fluoxetine alone (210 +/- 14.5%). Similar synergistic effects of the combination were observed in the hypothalamus, but not in the other regions studied. The dose response effects of the drugs alone and in combination were complex, but larger doses of the combinations produced greater monoamine concentration increases than smaller dose combinations. The effects of the olanzapine/fluoxetine combination are meaningful in prefrontal cortex and hypothalamus due to their hypothesized role in the etiology and pharmacotherapy of depression. The wide-ranging neurochemical effects of this drug combination may make it particularly useful as a treatment for complex, resistant depressions.


Subject(s)
Benzodiazepines/pharmacology , Biogenic Monoamines/metabolism , Brain/drug effects , Extracellular Fluid/drug effects , Fluoxetine/pharmacology , Animals , Benzodiazepines/administration & dosage , Brain/anatomy & histology , Corpus Striatum/drug effects , Dose-Response Relationship, Drug , Drug Combinations , Drug Synergism , Extracellular Fluid/metabolism , Fluoxetine/administration & dosage , Hypothalamus/drug effects , Male , Microdialysis , Nucleus Accumbens/drug effects , Olanzapine , Prefrontal Cortex/drug effects , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...