Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Wildl Dis ; 46(3): 687-94, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20688674

ABSTRACT

We report on the presence of specific antibodies to Brucella spp. and Yersinia enterocolitica in polar bears (Ursus maritimus) from northern Alaska (southern Beaufort Sea) during 2003-2006. Based on numerous known stressors (e.g., climate change and loss of sea ice habitat, contaminants), there is increased concern regarding the status of polar bears. Considering these changes, it is important to assess exposure to potentially pathogenic organisms and to improve understanding of transmission pathways. Brucella or specific antibodies to Brucella spp. has been reported in marine mammals. Various assays were used to elucidate the pathway or source of exposure (e.g., "marine" vs. "terrestrial" Brucella spp.) of northern Alaska polar bears to Brucella spp. The standard plate test (SPT) and the buffered Brucella antigen card test (BBA) were used for initial screening for antibodies specific to Brucella. We then evaluated positive reactors (presence of serum antibody specific for Brucella spp.) using immunoblots and competitive enzyme-linked immunosorbent assay (cELISA; based on pinniped-derived Brucella spp. antigen). Annual prevalence of antibody (BBA and SPT) for Brucella spp. ranged from 6.8% to 18.5% over 2003-2006, with an overall prevalence of 10.2%. Prevalence of Brucella spp. antibody did vary by age class. Western blot analyses indicated 17 samples were positive for Brucella spp. antibody; of these, 13 were negative by marine (pinniped) derived Brucella antigen cELISA and four were positive by marine cELISA. Of the four samples positive for Brucella antibody by marine cELISA, three cross-reacted with Y. enterocolitica and Brucella spp. (one sample was Brucella negative and Y. enterocolitica positive). It appears the polar bear antibody does not react with the antigens used on the marine cELISA assay, potentially indicating a terrestrial (nonpinniped) source of Brucella spp.


Subject(s)
Antibodies, Bacterial/blood , Brucella/immunology , Ursidae/microbiology , Yersinia enterocolitica/immunology , Alaska/epidemiology , Animals , Female , Male , Seroepidemiologic Studies , Stress, Psychological
2.
Vaccine ; 28 Suppl 5: F6-11, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20362205

ABSTRACT

With the completion of the genomic sequence of Brucella melitensis 16M, a putative hemagglutinin gene was identified which is present in 16M and absent in Brucella abortus. The possibility of this hemagglutinin being a potential virulence factor was evaluated via gene replacement in B. melitensis yielding 16MΔE and expression in trans in B. abortus 2308-QAE. Utilizing the caprine brucellosis model, colonization and pathogenesis studies were performed to evaluate these strains. B. melitensis 16M hemagglutinin gene expression in trans in 2308-QAE revealed a significant (p≤0.05) increase in colonization and abortion rates when compared to B. abortus 2308, mimicking B. melitensis 16M virulence in pregnant goats. The B. melitensis disruption mutant's colonization and abortion rates demonstrated no attenuation in colonization but displayed a 28% reduction in abortions when compared to parental B. melitensis 16M.


Subject(s)
Bacterial Proteins/genetics , Brucella melitensis/genetics , Brucellosis/veterinary , Goat Diseases/microbiology , Hemagglutinins/genetics , Abortion, Veterinary/microbiology , Animals , Antibodies, Bacterial/blood , Brucella abortus/genetics , Brucella melitensis/pathogenicity , Brucellosis/microbiology , DNA, Bacterial/genetics , Female , Goats , Mutation , Pregnancy , Virulence
3.
Vaccine ; 24(24): 5169-77, 2006 Jun 12.
Article in English | MEDLINE | ID: mdl-16697090

ABSTRACT

Pregnant goats were employed to assess unmarked deletion mutant vaccine candidates BMDeltaasp24, BMDeltacydBA, and BMDeltavirB2, as the target host species naturally infected with Brucella melitensis. Goats were assessed for the degree of pathology associated with the vaccine strains as well as the protective immunity afforded by each strain against abortion and infection after challenge with wild-type Brucella melitensis 16M. Both BMDeltaasp24 and BMDeltavirB2 were considered safe vaccine candidates in the pregnant goat model because they did not cause abortion or colonize fetal tissues. BMDeltaasp24 was isolated from the maternal tissues only, indicating a slower rate of clearance of the vaccine strain than for BMDeltavirB2, which was not isolated from any maternal or fetal tissues. Both strains were protective against abortion and against infection in the majority of pregnant goats, although BMDeltaasp24 was more efficacious than BMDeltavirB2 against challenge infection.


Subject(s)
Brucella Vaccine/immunology , Brucella melitensis/immunology , Brucellosis/prevention & control , Vaccines, Synthetic/immunology , Animals , Brucella Vaccine/adverse effects , Disease Models, Animal , Female , Goats , Mutation , Pregnancy , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...