Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4859, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612315

ABSTRACT

Corals are under siege by both local and global threats, creating a worldwide reef crisis. Cryopreservation is an important intervention measure and a vital component of the modern coral conservation toolkit, but preservation techniques are currently limited to sensitive reproductive materials that can only be obtained a few nights per year during spawning. Here, we report the successful cryopreservation and revival of cm-scale coral fragments via mL-scale isochoric vitrification. We demonstrate coral viability at 24 h post-thaw using a calibrated oxygen-uptake respirometry technique, and further show that the method can be applied in a passive, electronics-free configuration. Finally, we detail a complete prototype coral cryopreservation pipeline, which provides a platform for essential next steps in modulating post-thaw stress and initiating long-term growth. These findings pave the way towards an approach that can be rapidly deployed around the world to secure the biological genetic diversity of our vanishing coral reefs.


Subject(s)
Anthozoa , Isoflavones , Animals , Vitrification , Hawaii , Cryopreservation , Soybean Proteins
2.
PeerJ ; 11: e15723, 2023.
Article in English | MEDLINE | ID: mdl-37576514

ABSTRACT

Anthropogenic stressors threaten reefs worldwide and natural in situ coral reproduction may be inadequate to meet this challenge. Land-based culture can provide increased coral growth, especially with microfragments. We tested whether culture methods using different algal fouling communities could improve the growth and health metrics of microfragments of the Hawaiian coral, Porites compressa. Culture method fouling communities were: (1) similar to a reef environment (Mini Reef); (2) clean tanks managed to promote crustose coralline algae (Clean Start); and (3) tanks curated beforehand with poorly-competing algae (Green Film) assessed in winter and summer months. The Green Film method during the winter produced the fastest microfragment mean growth at 28 days until the first row of new polyps developed, and also the highest tank and plate metric health scores. Time efficient, standardized methods for land-based culture designed to maximize growth and production of coral fragments will contribute considerably to the success of large-scale restoration efforts.


Subject(s)
Anthozoa , Animals , Coral Reefs , Hawaii , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...