Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Geosci Data J ; 8(1): 74-89, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34158935

ABSTRACT

Minerals contain important clues to understanding the complex geologic history of Earth and other planetary bodies. Therefore, geologists have been collecting mineral samples and compiling data about these samples for centuries. These data have been used to better understand the movement of continental plates, the oxidation of Earth's atmosphere and the water regime of ancient martian landscapes. Datasets found at 'RRUFF.info/Evolution' and 'mindat.org' have documented a wealth of mineral occurrences around the world. One of the main goals in geoinformatics has been to facilitate discovery by creating and merging datasets from various scientific fields and using statistical methods and visualization tools to inspire and test hypotheses applicable to modelling Earth's past environments. To help achieve this goal, we have compiled physical, chemical and geological properties of minerals and linked them to the above-mentioned mineral occurrence datasets. As a part of the Deep Time Data Infrastructure, funded by the W.M. Keck Foundation, with significant support from the Deep Carbon Observatory (DCO) and the A.P. Sloan Foundation, GEMI ('Global Earth Mineral Inventory') was developed from the need of researchers to have all of the required mineral data visible in a single portal, connected by a robust, yet easy to understand schema. Our data legacy integrates these resources into a digestible format for exploration and analysis and has allowed researchers to gain valuable insights from mineralogical data. GEMI can be considered a network, with every node representing some feature of the datasets, for example, a node can represent geological parameters like colour, hardness or lustre. Exploring subnetworks gives the researcher a specific view of the data required for the task at hand. GEMI is accessible through the DCO Data Portal (https://dx.deepcarbon.net/11121/6200-6954-6634-8243-CC). We describe our efforts in compiling GEMI, the Data Policies for usage and sharing, and the evaluation metrics for this data legacy.

2.
Inorg Chem ; 59(9): 5813-5817, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32314904

ABSTRACT

Two uranium(IV) sulfate framework compounds were crystallized at room temperature from aqueous solutions containing uranyl ions by photochemical reduction in the presence of 2-propanol. U3H2(SO4)7(H2O)5·3H2O (1) crystallizes in space group P65 with a = 9.3052(17) Å, c = 53.515(10) Å, V = 4012.9(13) Å3, and Z = 6, and U3(UO2)0.2(SO4)6(OH)0.4·2.3H2O (2) is tetragonal, with space group P42/nmc, a = 25.624(3) Å, c = 8.9435(10) Å, V = 5872.2(11) Å3, and Z = 8. The structures of 1 and 2 are the most complex among uranium(IV) sulfates.

3.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 3): 339-343, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32148872

ABSTRACT

Three huntite-type aluminoborates of stoichiometry REAl3(BO3)4 (RE = Tb, Dy and Ho), namely, terbium/dysprosium/holmium trialuminium tetrakis(borate), were synthesized by slow cooling within a K2Mo3O10 flux with spontaneous crystallization. The crystal structures were determined using single-crystal X-ray diffraction (SC-XRD) data. The synthesized borates are isostructural to the huntite [CaMg3(CO3)4] structure and crystallized within the trigonal R32 space group. The structural parameters were compared to literature data of other huntite REAl3(BO3)4 crystals within the R32 space group. All three borates fit well into the trends calculated from the literature data. The unit-cell parameters and volumes increase linearly with larger RE cations whereas the densities decrease. All of the crystals studied were refined as inversion twins.

4.
Environ Sci Process Impacts ; 21(7): 1174-1183, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31187835

ABSTRACT

The terminal oxygen atoms of the pyrophosphate groups in the uranyl peroxide nanocluster U24Pp12 ([(UO2)24(O2)24(P2O7)12]48-) are not fully satisfied by bond valence considerations and can become protonated. This functionality could allow for specific interactions with mineral surfaces, as opposed to the electrostatically-driven interactions observed between non-functionalized uranyl peroxide nanoclusters and mineral surfaces. The sorption of U24Pp12 to goethite and hematite was studied using batch sorption experiments as a function of U24Pp12 concentration, mineral concentration, and pH. A suite of spectroscopic techniques, scanning electron microscopy, and electrophoretic mobility measurements were used to examine the minerals before and after reaction with U24Pp12, leading to a proposed conceptual model for U24Pp12 interactions with goethite. The governing rate laws were determined and compared to those previously determined for a non-functionalized uranyl peroxide nanocluster. The rate of uranyl peroxide nanocluster sorption depends on the charge density and functionalized component of the uranyl peroxide cage. Electrophoretic mobility and attenuated total reflectance Fourier transform infrared spectroscopy analyses show that an inner-sphere complex forms between the U24Pp12 cluster and the goethite surface through the terminal pyrophosphate groups, leading to a proposed conceptual model in which U24Pp12 interacts with the triply-coordinated reactive sites on the (110) plane of goethite. These results demonstrate that the behavior of U24Pp12 at the iron (hydr)oxide-water interface is unique relative to interactions of the uranyl ion and non-functionalized uranyl peroxide nanoclusters.


Subject(s)
Diphosphates/chemistry , Ferric Compounds/chemistry , Iron Compounds/chemistry , Minerals/chemistry , Models, Theoretical , Nanostructures/chemistry , Uranium Compounds/chemistry , Adsorption , Static Electricity
5.
Inorg Chem ; 57(15): 9296-9305, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30003788

ABSTRACT

Solid UO2 dissolution and uranium speciation in aqueous solutions that promote formation of uranyl peroxide macroanions was examined, with a focus on the role of alkali metals. UO2 powders were dissolved in solutions containing XOH (X = Li, Na, K) and 30% H2O2. Inductively coupled plasma optical emission spectrometry (ICP-OES) measurements of solutions revealed linear trends of uranium versus alkali concentration in solutions resulting from oxidative dissolution of UO2, with X:U molar ratios of 1.0, showing that alkali availability determines the U concentrations in solution. The maximum U concentration in solution was 4.20 × 105 parts per million (ppm), which is comparable to concentrations attained by dissolving UO2 in boiling nitric acid, and was achieved by lithium hydroxide promoted dissolution. Raman spectroscopy and electrospray ionization mass spectrometry (ESI-MS) of solutions indicate that dissolution is accompanied by the formation of various uranyl peroxide cluster species, the identity of which is alkali concentration dependent, revealing remarkably complex speciation at high concentrations of base.

SELECTION OF CITATIONS
SEARCH DETAIL
...