Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 74(1): 39-51, 2024 01.
Article in English | MEDLINE | ID: mdl-37921558

ABSTRACT

This paper focuses on the impact of solid barriers located upwind of a highway in reducing vehicle related concentrations that occur downwind of the roadway, compared to a highway without barriers. Measurements made in the United States Environmental Protection Agency's meteorological wind tunnel show that the mitigating impact of an upwind barrier is comparable to that of a downwind barrier. Upwind barriers lead to reductions in pollution concentrations by drawing emissions in from the highway toward the barrier. The emissions are then entrained into the flow above the recirculation zone and dispersed vertically as they are advected downwind. This upwind transport of vehicle emissions leads to concentrations at the center of the roadways that are roughly 200-300% higher than those measured on roadways with downwind barriers. This difference between on-road concentrations indicates that although both types of barriers mitigate the impact of vehicle emissions downwind of a roadway, the upwind barrier may create adverse air quality impacts for the people on the road.We have formulated a semiempirical dispersion model that incorporates the physics revealed by the wind tunnel measurements. This model improves upon a model proposed by Ahangar et al. (2017) by adjusting the wind speed to get a more realistic plume dispersion just downwind of the upwind barrier and also by providing vertical profiles of concentrations in addition to ground-level concentrations. The upwind barrier model proposed in this paper and the downwind barrier model described in Francisco et al. (2022) have been incorporated into AERMOD (version 21112) as a nonregulatory option, including the new two-barrier option when modeling both barriers on the same roadway.Implications: Our paper presents an air dispersion model algorithm for modeling the effect of upwind noise barriers on dispersion of traffic-related emissions from roadways, which was incorporated into EPA's AERMOD and then evaluated using observations from a wind tunnel experiment. The results are compared and contrasted with results from both a no-barrier case and downwind barrier cases. This manuscript expands on previously published work analyzing the effect of barrier height and source-to-barrier distance on downwind dispersion (Atmos. Pollut. Res., 13:101385, 2022, https://doi.org/10.1016/j.apr.2022.101385). The current manuscript uses the same wind tunnel setup as reported there, but focuses on a different subset of cases, namely the upwind barrier cases, when developing dispersion model algorithms to simulate the observed effects. We believe the evaluations of the vertical profiles from the wind tunnel study, development, and incorporation of the upwind barrier algorithms into AERMOD, and model evaluation of these new algorithms are significant contributions to understanding the effects of these commonly used roadside barriers.


Subject(s)
Air Pollutants , Air Pollution , Humans , Air Pollutants/analysis , Vehicle Emissions/analysis , Particulate Matter/analysis , Environmental Monitoring/methods , Air Pollution/prevention & control , Air Pollution/analysis
2.
Atmos Pollut Res ; 13(4): 1-101385, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35450153

ABSTRACT

New results are presented from wind tunnel studies performed at the United States Environmental Protection Agency (U.S. EPA), which include cases with solid roadside barriers of varying heights and cases with varying distances between the line source (roadway) and a 6-m-tall barrier. The Source-to-Barrier Distance cases include seven lanes of traffic with each lane acting as an independent source of continuous emissions along a line (i.e., line source). A mixed-wake algorithm that accounts for barrier effects within a steady-state air dispersion model was updated based on the recent wind tunnel studies. To study the effects of a solid roadside barrier, varying barrier heights and varying distances between the line source and barrier were modeled with the U.S. EPA regulatory air dispersion model AERMOD (v. 21112) using the line-source option that includes an experimental barrier option (RLINEXT). The mixed-wake algorithm reproduced the shape of the vertical concentration profiles observed in the wind tunnel data, including the uniform concentration profile from the ground vertically to a height somewhat greater than the height of the barrier. The algorithm responded appropriately to changes in barrier height and source-to-barrier distance, producing greater reductions in ground-level concentrations for taller barriers and for shorter source-to-barrier distances. Additionally, a rule of thumb that approximates the effect of a downwind barrier was formulated by converting an estimated vertical dispersion into an additional travel distance. The wind tunnel results, the update to the mixed-wake algorithm, and a comparison of the two data sets are described in this paper.

3.
Atmos Pollut Res ; 12(2): 367-374, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33746529

ABSTRACT

This paper presents an analysis of data from a wind tunnel study conducted to examine the dispersion of emissions at the edges of near-road noise barriers. The study is motivated by the concern that a barrier positioned downwind of a roadway may guide highly polluted plumes along the barrier leading to heightened concentrations as the plume spills around and downwind of the barrier end. The wind tunnel database consists of measurements of dispersion around a simulated roadway segment with various noise barrier configurations. Each roadway segment simulated in the wind tunnel had full-scale equivalent dimensions of 135 m long. Barrier segments, 135 m long with a height (H) of 6 m, were located on the downwind side of the source at a distance of 18 m from it (measured perpendicularly from the line source). Examination of the concentration patterns associated with the cases indicates that 1) vertical mixing induced by barriers persists at crosswind distances up to the edge (lateral end) of the barrier and downwind distances of x/H = 10, 2) concentration levels at all heights below z/H = 1 increase towards the edge of the barrier at downwind distances less than x/H = 7, and 3) concentration is well mixed in the vertical at the edge of the barrier, and the levels can be higher than in the middle of the barrier even when the source ends at the edge of the barrier. We have formulated a parameterization that captures the major features of these observations and can be incorporated in models such as RLINE.

4.
Atmos Environ (1994) ; 186: 189-197, 2018.
Article in English | MEDLINE | ID: mdl-31534415

ABSTRACT

This paper presents an analysis of data from a wind tunnel (Heist et al., 2009) conducted to study dispersion of emissions from three depressed roadway configurations; a 6 m deep depressed roadway with vertical sidewalls, a 6 m deep depressed roadway with 30° sloping sidewalls, and a 9 m deep depressed roadway with vertical sidewalls. The width of the road at the bottom of the depression is 36 m for all cases. All these configurations induce complex flow fields, increase turbulence levels, and decrease surface concentrations downwind of the depressed road compared to those of the at-grade configuration. The parameters of flat terrain dispersion models are modified to describe concentrations measured downwind of the depressed roadways. In the first part of the paper, a flat terrain model proposed by van Ulden (1978) is adapted. It turns out that this model with increased initial vertical dispersion and friction velocity is able to explain the observed concentration field. The results also suggest that the vertical concentration profiles of all cases under neutral conditions are best explained by a vertical distribution function with an exponent of 1.3. In the second part of the paper, these modifications are incorporated into a model based on the RLINE (Snyder et al., 2013) line-source dispersion model. While this model can be adapted to yield acceptable estimates of near-surface concentrations (z< 6m) measured in the wind tunnel, the Gaussian vertical distribution in RLINE, with an exponent of 2, cannot describe the concentration at higher elevations. Our findings suggest a simple method to account for depressed highways in models such as RLINE and AERMOD through two parameters that modify vertical plume spread.

5.
Article in English | MEDLINE | ID: mdl-31595141

ABSTRACT

A laboratory study of the influence of complex terrain on the interface between a well-mixed boundary layer and an elevated stratified layer was conducted in the towing-tank facility of the U.S. Environmental Protection Agency. The height of the mixed layer in the daytime boundary layer can have a strong influence on the concentration of pollutants within this layer. Deflections of streamlines at the height of the interface are primarily a function of hill Froude number (Fr), the ratio of mixed-layer height (z i ) to terrain height (h), and the crosswind dimension of the terrain. The magnitude of the deflections increases as Fr increases and z i /h decreases. For mixing-height streamlines that are initially below the terrain top, the response is linear with Fr; for those initially above the terrain feature the response to Fr is more complex. Once Fr exceeds about 2, the terrain-related response of the mixed layer interface decreases somewhat with increasing Fr (toward more neutral flow). Deflections are also shown to increase as the crosswind dimensions of the terrain increase. Comparisons with numerical modeling, limited field data, and other laboratory measurements reported in the literature are favorable. Additionally, visual observations of dye streamers suggest that the flow structure exhibited for our elevated inversions passing over three dimensional hills is similar to that reported in the literature for continuously stratified flow over two-dimensional hills.

6.
J Environ Monit ; 11(12): 2163-70, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20024013

ABSTRACT

Wind tunnel experiments were performed to examine the effect of a tall tower on the flow around an otherwise uniform array of buildings. Additionally, preliminary CFD simulations were run to visualize the flow with more resolution. The model used in both the wind tunnel and CFD studies was designed to simulate an area of Brooklyn, NY, USA, where blocks of residential row houses form a neighborhood bordering a major urban highway. This area was the site of a field study that, along with the work reported here, had the goal of improving the understanding of airflow and dispersion patterns within urban microenvironments. Results reveal that a tall tower has a dramatic effect on the flow in the street canyons in the neighboring blocks, enhancing the exchange between the street canyon flow and the freestream flow aloft. In particular, vertical motion down the windward side and up the leeward side of the tower resulted in strong flows in the lateral street canyons and increased winds in the street canyons in the immediate vicinity of the tower. These phenomena were visible in both the wind tunnel and CFD results, although some minor differences in the flow fields were noted.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Wind , Air Pollutants/analysis , Kinetics , New York City
7.
J Environ Monit ; 11(12): 2171-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20024014

ABSTRACT

This article is the second in a two-paper series presenting results from wind tunnel and computational fluid dynamics (CFD) simulations of flow and dispersion in an idealized model urban neighborhood. Pollutant dispersion results are presented and discussed for a model neighborhood that was characterized by regular city blocks of three-story row houses with a single 12-story tower located at the downwind edge of one of these blocks. The tower had three significant effects on pollutant dispersion in the surrounding street canyons: drawing the plume laterally towards the tower, greatly enhancing the vertical dispersion of the plume in the wake of the tower, and significantly decreasing the residence time of pollutants in the wake of the tower. In the wind tunnel, tracer gas released in the avenue lee of the tower, but several blocks away laterally, was pulled towards the tower and lifted in the wake of the tower. The same lateral movement of the pollutant was seen in the next avenue, which was approximately 2.5 tower heights downwind of the tower. The tower also served to ventilate the street canyon directly in its wake more rapidly than the surrounding areas. This was evidenced by CFD simulations of concentration decay where the residence time of pollutants lee of the 12-story tower was found to be less than half the residence time behind a neighboring three-story building. This same phenomenon of rapid vertical dispersion lee of a tower among an array of smaller buildings was also demonstrated in a separate set of wind tunnel experiments using an array of cubical blocks. A similar decrease in the residence time was observed when the height of one block was increased.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Models, Theoretical , Kinetics , New York City , Time Factors , Wind
8.
Environ Toxicol Chem ; 21(3): 659-71, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11878480

ABSTRACT

The aerial spray prediction model AgDRIFT embodies the computational engine found in the near-wake Lagrangian model AGricultural DISPersal (AGDISP) but with several important features added that improve the speed and accuracy of its predictions. This article summarizes those changes, describes the overall analytical approach to the model, and details model implementation, application, limits, and computational utilities.


Subject(s)
Agriculture/statistics & numerical data , Models, Theoretical , Pesticides/analysis , Air Movements , Forecasting , Sensitivity and Specificity , Software
9.
Environ Toxicol Chem ; 21(3): 672-81, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11878481

ABSTRACT

A systematic evaluation of the AgDISP algorithms, which simulate off-site drift and deposition of aerially applied pesticides, contained in the AgDRIFT model was performed by comparing model simulations to field-trial data collected by the Spray Drift Task Force. Field-trial data used for model evaluation included 161 separate trials of typical agriculture aerial applications under a wide range of application and meteorological conditions. Input for model simulations included information on the aircraft and spray equipment, spray material, meteorology, and site geometry. The model input datasets were generated independently of the field deposition results, i.e., model inputs were in no way altered or selected to improve the fit of model output to field results. AgDRIFT shows a response similar to that of the field observations for many application variables (e.g., droplet size, application height, wind speed). However, AgDRIFT is sensitive to evaporative effects, and modeled deposition in the far-field responds to wet bulb depression whereas the field observations did not. The model tended to overpredict deposition rates relative to the field data for far-field distances, particularly under evaporative conditions. AgDRIFT was in good agreement with field results for estimating near-field buffer zones needed to manage human, crop, livestock, and ecological exposure.


Subject(s)
Agriculture/statistics & numerical data , Algorithms , Models, Theoretical , Pesticides/analysis , Air Movements , Animals , Animals, Domestic , Databases, Factual , Forecasting , Humans , Meteorological Concepts , Public Health
SELECTION OF CITATIONS
SEARCH DETAIL
...