Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Genet ; 19(11): e1011066, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38019881

ABSTRACT

The centromere is an epigenetic mark that is a loading site for the kinetochore during meiosis and mitosis. This mark is characterized by the H3 variant CENP-A, known as CID in Drosophila. In Drosophila, CENP-C is critical for maintaining CID at the centromeres and directly recruits outer kinetochore proteins after nuclear envelope break down. These two functions, however, happen at different times in the cell cycle. Furthermore, in Drosophila and many other metazoan oocytes, centromere maintenance and kinetochore assembly are separated by an extended prophase. We have investigated the dynamics of function of CENP-C during the extended meiotic prophase of Drosophila oocytes and found that maintaining high levels of CENP-C for metaphase I requires expression during prophase. In contrast, CID is relatively stable and does not need to be expressed during prophase to remain at high levels in metaphase I of meiosis. Expression of CID during prophase can even be deleterious, causing ectopic localization to non-centromeric chromatin, abnormal meiosis and sterility. CENP-C prophase loading is required for multiple meiotic functions. In early meiotic prophase, CENP-C loading is required for sister centromere cohesion and centromere clustering. In late meiotic prophase, CENP-C loading is required to recruit kinetochore proteins. CENP-C is one of the few proteins identified in which expression during prophase is required for meiotic chromosome segregation. An implication of these results is that the failure to maintain recruitment of CENP-C during the extended prophase in oocytes would result in chromosome segregation errors in oocytes.


Subject(s)
Drosophila Proteins , Meiosis , Animals , Meiosis/genetics , Chromosome Segregation/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Prophase/genetics , Centromere/genetics , Centromere/metabolism , Drosophila/genetics , Drosophila/metabolism , Mitosis , Kinetochores/metabolism , Centromere Protein A/genetics , Centromere Protein A/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism
2.
bioRxiv ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-36993339

ABSTRACT

The centromere is an epigenetic mark that is a loading site for the kinetochore during meiosis and mitosis. This mark is characterized by the H3 variant CENP-A, known as CID in Drosophila. In Drosophila, CENP-C is critical for maintaining CID at the centromeres and directly recruits outer kinetochore proteins after nuclear envelope break down. It is not known, however, if these two functions require the same CENP-C molecules. Furthermore, in Drosophila and many other metazoan oocytes, centromere maintenance and kinetochore assembly are separated by an extended prophase. Consistent with studies in mammals, CID is relatively stable and does not need to be expressed during prophase to remain at high levels in metaphase I of meiosis. Expression of CID during prophase can even be deleterious, causing ectopic localization to non-centromeric chromatin, abnormal meiosis and sterility. In contrast to CID, maintaining high levels of CENP-C requires expression during prophase. Confirming the importance of this loading, we found CENP-C prophase loading is required for multiple meiotic functions. In early meiotic prophase, CENP-C loading is required for sister centromere cohesion and centromere clustering. In late meiotic prophase, CENP-C loading is required to recruit kinetochore proteins. CENP-C is one of the few proteins identified in which expression during prophase is required for meiotic chromosome segregation. An implication of these results is that the failure to maintain recruitment of CENP-C during the extended prophase in oocytes would result in chromosome segregation errors in oocytes.

SELECTION OF CITATIONS
SEARCH DETAIL
...