Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 803: 149832, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-34525712

ABSTRACT

The share of non-exhaust particles, including tire wear particles (TWP), within the airborne dust and particularly within PM10 has increased in recent years due to a significant reduction of other particles including exhaust road traffic emissions. However, the quantification of TWP is a demanding task due to the non-specificity of tracers, and the fact that they are commonly contained in analytically challenging low concentrations (e.g. Zn, styrene, 1,3-butadiene, vinylcyclohexene). This difficulty is amplified by the chemical and morpho-textural heterogeneity of TWP resulting from the interaction between the tires and the road surface. In contrast to bulk techniques, automated single particle SEM/EDX analysis can benefit from the ubiquitous heterogeneity of environmental TWP as a diagnostic criterion for their identification and quantification. For this purpose, we follow a machine-learning (ML) approach that makes use of an extensive number (67) of morphological, textural (backscatter-signal based) and chemical descriptors to differentiate environmental particles into the following classes: TWP, metals, minerals and biogenic/organic. We present a ML-based model developed to classify airborne samples (trained by >100,000 environmental particles including 6841 TWP), and its application within a one-year monitoring campaign at two Swiss sites. In this study, the mass concentrations of TWP in the airborne fractions PM80-10, PM10-2.5 and PM2.5-1 were determined. Furthermore, the particle size distribution and shape characteristics of 5621 TWP were evaluated. A cut through a TWP by means of FIB-SEM evidences that the mineral and metal particles typically found in TWP are not only present on the particle surface but also throughout the complete TWP volume. At the urban background site, the annual average mass fraction of TWP and micro-rubber in PM10 was 1.8% (0.28 µg/m3) and 0.9%, respectively. At the urban kerbside site, the corresponding values were 6 times higher amounting to 10.5% (2.24 µg/m3) for TWP, and 5.0% for micro-rubber.


Subject(s)
Air Pollutants , Dust , Dust/analysis , Environmental Monitoring , Machine Learning , Particle Size , Particulate Matter/analysis , Single Molecule Imaging , Vehicle Emissions/analysis
2.
BMC Bioinformatics ; 8: 131, 2007 Apr 20.
Article in English | MEDLINE | ID: mdl-17445280

ABSTRACT

BACKGROUND: PCR has the potential to detect and precisely quantify specific DNA sequences, but it is not yet often used as a fully quantitative method. A number of data collection and processing strategies have been described for the implementation of quantitative PCR. However, they can be experimentally cumbersome, their relative performances have not been evaluated systematically, and they often remain poorly validated statistically and/or experimentally. In this study, we evaluated the performance of known methods, and compared them with newly developed data processing strategies in terms of resolution, precision and robustness. RESULTS: Our results indicate that simple methods that do not rely on the estimation of the efficiency of the PCR amplification may provide reproducible and sensitive data, but that they do not quantify DNA with precision. Other evaluated methods based on sigmoidal or exponential curve fitting were generally of both poor resolution and precision. A statistical analysis of the parameters that influence efficiency indicated that it depends mostly on the selected amplicon and to a lesser extent on the particular biological sample analyzed. Thus, we devised various strategies based on individual or averaged efficiency values, which were used to assess the regulated expression of several genes in response to a growth factor. CONCLUSION: Overall, qPCR data analysis methods differ significantly in their performance, and this analysis identifies methods that provide DNA quantification estimates of high precision, robustness and reliability. These methods allow reliable estimations of relative expression ratio of two-fold or higher, and our analysis provides an estimation of the number of biological samples that have to be analyzed to achieve a given precision.


Subject(s)
Polymerase Chain Reaction/methods , Polymerase Chain Reaction/statistics & numerical data , Base Sequence/genetics , Gene Expression Regulation/genetics , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...