Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Planta ; 212(2): 190-8, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11216839

ABSTRACT

A model system based on the Arabidopsis thaliana (L.) Heynh. Ws ecotype and its naturally colonizing Pseudomonas thivervalensis rhizobacteria was defined. Pseudomonas strains colonizing A. thaliana were found to modify the root architecture either in vivo or in vitro. A gnotobiotic system using bacteria labelled with green fluorescent protein revealed that P. thivervalensis exhibited a colonization profile similar to that of other rhizobacterial species. Mutants of A. thaliana affected in root hair development and possible hormone perception were used to analyze the plant genetic determinants of bacterial colonization. A screen for mutants insensitive to P. thivervalensis colonization yielded two mutants found to be auxin resistant. This further supports a proposed role for bacterial auxin in inducing morphological modifications of roots. This work paves the way for studying the interaction between plants and non-pathogenic rhizobacteria in a gnotobiotic system, derived from a natural association, where interactions between both partners can be genetically dissected.


Subject(s)
Arabidopsis/microbiology , Mutation , Pseudomonas/physiology , Arabidopsis/genetics , Plant Roots/microbiology
2.
Plant Cell ; 11(1): 87-99, 1999 Jan.
Article in English | MEDLINE | ID: mdl-9878634

ABSTRACT

A recessive mutation in Arabidopsis, named chaos (for chlorophyll a/b binding protein harvesting-organelle specific; designated gene symbol CAO), was isolated by using transposon tagging. Characterization of the phenotype of the chaos mutant revealed a specific reduction of pigment binding antenna proteins in the thylakoid membrane. These nuclear-encoded proteins utilize a chloroplast signal recognition particle (cpSRP) system to reach the thylakoid membrane. Both prokaryotes and eukaryotes possess a cytoplasmic SRP containing a 54-kD protein (SRP54) and an RNA. In chloroplasts, the homolog of SRP54 was found to bind a 43-kD protein (cpSRP43) rather than to an RNA. We cloned the CAO gene, which encodes a protein identified as Arabidopsis cpSRP43. The product of the CAO gene does not resemble any protein in the databases, although it contains motifs that are known to mediate protein-protein interactions. These motifs include ankyrin repeats and chromodomains. Therefore, CAO encodes an SRP component that is unique to plants. Surprisingly, the phenotype of the cpSRP43 mutant (i.e., chaos) differs from that of the Arabidopsis cpSRP54 mutant, suggesting that the functions of the two proteins do not strictly overlap. This difference also suggests that the function of cpSRP43 is most likely restricted to protein targeting into the thylakoid membrane, whereas cpSRP54 may be involved in an additional process(es), such as chloroplast biogenesis, perhaps through chloroplast-ribosomal association with chloroplast ribosomes.


Subject(s)
Arabidopsis/metabolism , Chloroplasts/metabolism , Oxygenases/metabolism , Photosynthetic Reaction Center Complex Proteins/metabolism , Signal Recognition Particle/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Base Sequence , Chloroplasts/genetics , Cloning, Molecular , DNA Transposable Elements , Light-Harvesting Protein Complexes , Molecular Sequence Data , Mutagenesis
3.
Proc Natl Acad Sci U S A ; 95(17): 10312-6, 1998 Aug 18.
Article in English | MEDLINE | ID: mdl-9707644

ABSTRACT

The mechanisms involved in the posttranslational targeting of membrane proteins are not well understood. The light-harvesting chlorophyll proteins (LHCP) of the thylakoid membrane are a large family of hydrophobic proteins that are targeted in this manner. They are synthesized in the cytoplasm, translocated across the chloroplast envelope membranes into the stroma, bound by a stromal factor to form a soluble intermediate, "transit complex", and then integrated into the thylakoid membrane by a GTP dependent reaction. Signal recognition particle (SRP), a cytoplasmic ribonucleoprotein, is known to mediate the GTP dependent cotranslational targeting of proteins to the endoplasmic reticulum. We show that chloroplasts contain an SRP consisting of, cpSRP54, a homologue of SRP54 and a previously undescribed 43-kDa polypeptide (cpSRP43) instead of an RNA. We demonstrate that both subunits of cpSRP are required for the formation of the transit complex with LHCP. Furthermore, cpSRP54, cpSRP43, and LHCP are sufficient to form a complex that appears to be identical to authentic transit complex. We also show that the complex formed between LHCP and cpSRP, together with an additional soluble factor(s) are required for the proper integration of LHCP into the thylakoid membrane. It appears that the expanded role of cpSRP in posttranslational targeting of LHCP has arisen through the evolution of the 43-kDa protein.

SELECTION OF CITATIONS
SEARCH DETAIL
...