Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 125(28): 8505-14, 2003 Jul 16.
Article in English | MEDLINE | ID: mdl-12848556

ABSTRACT

The cycling between active and inactive states of the catalytic center of [NiFe]-hydrogenase from Allochromatium vinosum has been investigated by dynamic electrochemical techniques. Adsorbed on a rotating disk pyrolytic graphite "edge" electrode, the enzyme is highly electroactive: this allows precise manipulations of the complex redox chemistry and facilitates quantitative measurements of the interconversions between active catalytic states and the inactive oxidized form Ni(r) (also called Ni-B or "ready") as functions of pH, H(2) partial pressure, temperature, and electrode potential. Cyclic voltammograms for catalytic H(2) oxidation (current is directly related to turnover rate) are highly asymmetric (except at pH > 8 and high temperature) due to inactivation being much slower than activation. Controlled potential-step experiments show that the rate of oxidative inactivation increases at high pH but is independent of potential, whereas the rate of reductive activation increases as the potential becomes more negative. Indeed, at 45 degrees C, activation takes just a few seconds at -288 mV. The cyclic asymmetry arises because interconversion is a two-stage reaction, as expected if the reduced inactive Ni(r)-S state is an intermediate. The rate of inactivation depends on a chemical process (rearrangement and uptake of a ligand) that is independent of potential, but sensitive to pH, while activation is driven by an electron-transfer process, Ni(III) to Ni(II), that responds directly to the driving force. The potentials at which fast activation occurs under different conditions have been analyzed to yield the potential-pH dependence and the corresponding entropies and enthalpies. The reduced (active) enzyme shows a pK of 7.6; thus, when a one-electron process is assumed, reductive activation at pH < 7 involves a net uptake of one proton (or release of one hydroxide), whereas, at pH > 8, there is no net exchange of protons with solvent. Activation is favored by a large positive entropy, consistent with the release of a ligand and/or relaxation of the structure around the active site.


Subject(s)
Chromatiaceae/enzymology , Hydrogenase/chemistry , Hydrogenase/metabolism , Electrochemistry , Enzyme Activation , Hydrogen-Ion Concentration , Kinetics , Partial Pressure , Temperature , Thermodynamics
2.
Biochim Biophys Acta ; 1555(1-3): 54-9, 2002 Sep 10.
Article in English | MEDLINE | ID: mdl-12206891

ABSTRACT

It is no surprise that the catalytic activity of electron-transport enzymes may be optimised at certain electrochemical potentials in ways that are analogous to observations of pH-rate optima. This property is observed clearly in experiments in which an enzyme is adsorbed on an electrode surface which can supply or receive electrons rapidly and in a highly controlled manner. In such a way, the rate of catalysis can be measured accurately as a function of the potential (driving force) that is applied. In this paper, we draw attention to a few examples in which this property has been observed in enzymes that are associated with membrane-bound respiratory chains, and we discuss its possible origins and implications for in vivo regulation.


Subject(s)
Iron-Sulfur Proteins , Oxidoreductases/chemistry , Animals , Catalysis , Cattle , Electrochemistry , Electron Transport , Escherichia coli , Hydrogen-Ion Concentration , Mitochondria/enzymology , Nitrate Reductase , Nitrate Reductases , Oxidation-Reduction , Succinate Dehydrogenase/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...