Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Metab ; 30(3): 447-461.e5, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31378464

ABSTRACT

Mechanisms that regulate metabolites and downstream energy generation are key determinants of T cell cytokine production, but the processes underlying the Th17 profile that predicts the metabolic status of people with obesity are untested. Th17 function requires fatty acid uptake, and our new data show that blockade of CPT1A inhibits Th17-associated cytokine production by cells from people with type 2 diabetes (T2D). A low CACT:CPT1A ratio in immune cells from T2D subjects indicates altered mitochondrial function and coincides with the preference of these cells to generate ATP through glycolysis rather than fatty acid oxidation. However, glycolysis was not critical for Th17 cytokines. Instead, ß oxidation blockade or CACT knockdown in T cells from lean subjects to mimic characteristics of T2D causes cells to utilize 16C-fatty acylcarnitine to support Th17 cytokines. These data show long-chain acylcarnitine combines with compromised ß oxidation to promote disease-predictive inflammation in human T2D.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Fatty Acids/metabolism , Lymphocyte Activation/immunology , Th17 Cells/immunology , Adult , Aged , Carnitine/analogs & derivatives , Carnitine/metabolism , Carnitine O-Palmitoyltransferase/genetics , Cells, Cultured , Cross-Sectional Studies , Cytokines/metabolism , Female , Gene Knockdown Techniques , Glycolysis/genetics , Humans , Inflammation/metabolism , Male , Membrane Transport Proteins/genetics , Middle Aged , Obesity/metabolism , Oxidation-Reduction , Transfection , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...