Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Opt Lett ; 45(20): 5879, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33057308

ABSTRACT

The referenced article [Opt. Lett.43, 4615 (2018)OPLEDP0146-959210.1364/OL.43.004615] has been retracted by the authors.

2.
Opt Lett ; 43(19): 4615-4618, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30272705

ABSTRACT

Miniaturized magnetic field sensors are increasingly used in various applications, such as geophysical exploration for minerals and oil, volcanology, earthquake studies, and biomedical imaging. Existing magnetometers lack either the spatial or the temporal resolution or are restricted to costly shielded labs and cannot operate in an unshielded environment. Increasing spatio-temporal resolution would allow for real-time measurements of magnetic fluctuations with high resolution. Here we report on a new nanocomposite-based system for miniaturized magnetic field sensing. The sensor is based on Dy3+-doped magnetite and cobalt ferrite nanoparticles dispersed in a polymer matrix. Operation is feasible at room temperature and in an unshielded environment. A compact fiber-optic interferometer is used as the detection mechanism with 20 fT/√Hz sensitivity. We investigated the magnetic field response of the sensor and demonstrated the measurement of the human heartbeat as a potential application.

3.
Phys Chem Chem Phys ; 15(16): 6107-12, 2013 Apr 28.
Article in English | MEDLINE | ID: mdl-23503337

ABSTRACT

Lithium ion batteries have conquered most of the portable electronics market and are now on the verge of deployment in large scale applications. To be competitive in the automotive and stationary sectors, however, they must be improved in the fields of safety and energy density (W h L(-1)). Solid-state batteries with a ceramic electrolyte offer the necessary advantages to significantly improve the current state-of-the-art technology. The major limit towards realizing a practical solid-state lithium-ion battery lies in the lack of viable ceramic ionic conductors. Only a few candidate materials are available, each carrying a difficult balance between advantages and drawbacks. Here we introduce a new class of possible solid-state lithium-ion conductors with the spinel structure. Such compounds could be coupled with spinel-type electrode materials to obtain a "lattice matching" solid device where low interfacial resistance could be achieved. Powders were prepared by wet chemistry, their structure was studied by means of diffraction techniques and magic angle spinning NMR, and Li(+) self-diffusion was estimated by static NMR line shape measurements. Profound differences in the Li(+) diffusion properties were observed depending on the composition, lithium content and cationic distribution. Local Li(+) hopping in the spinel materials is accompanied by a low activation energy of circa 0.35 eV being comparable with that of, e.g., LLZO-type garnets, which represent the current benchmark in this field. We propose these novel materials as a building block for a lattice-matching all-spinel solid-state battery with low interfacial resistance.

5.
J Org Chem ; 72(15): 5855-8, 2007 Jul 20.
Article in English | MEDLINE | ID: mdl-17595143

ABSTRACT

The synthesis of a new series of Lambda-type, D-Pi-A regioregular oligothiophenes is described. The simultaneous presence of the chiral centers and the Lambda-type structure disfavored the formation of centro-symmetrical dimeric assemblies. Hence, enhanced first hyperpolarizabilities betaHRS were measured in comparison with those of the corresponding monomers.

6.
Inorg Chem ; 45(24): 9703-12, 2006 Nov 27.
Article in English | MEDLINE | ID: mdl-17112266

ABSTRACT

A series of conjugated (porphinato)zinc(II)-based chromophores structurally related to [5-(4-dimethylaminophenylethynyl)-15-(5-nitrothienyl-2-ethynyl)-10,20-bis(3,5-bis(3,3-dimethyl-1-butyloxy)phenyl)]zinc(II) were synthesized using metal-catalyzed cross-coupling reactions involving [5-bromo-15-triisopropylsilylethynyl-10,20-diarylporphinato]zinc(II), [5-bromo-15-(4-dimethylaminophenylethynyl)-10,20-diarylporphinato]zinc(II), [5-(4-dimethylaminophenylethynyl)-15-ethynyl-10,20-diarylporphinato]zinc(II), and [5-(4-nitrophenylethynyl)-15-ethynyl-10,20-diarylporphinato]zinc(II), along with appropriately functionalized aryl, thienyl (or thiophenyl), thiazolyl, benzothiazolyl, and carbazolyl precursors. The linear and nonlinear optical properties of these asymmetrically 5,15-substitued-(10,20-diarylporphinato)zinc(II) chromophores that bear either 2-(9H-carbazol-9-yl)-thiophen-5-yl-ethynyl, 4-dimethylaminophenylethynyl, or 2-(N,N-diphenylamino)thiophen-5-yl-ethynyl electron-releasing groups and an electron-withdrawing group selected from 2-formyl-thiophen-5-yl-ethynyl, 2-(2,2-dicyanovinyl)-thiophen-5-yl-ethynyl, 4-nitrophenylethynyl, 6-nitrobenzothiazol-2-yl-ethynyl, or 5-nitrothiazol-2-yl-ethynyl are reported. The dynamic hyperpolarizabilities of these compounds were determined from hyper-Rayleigh light scattering measurements carried out at a fundamental incident irradiation wavelength (lambda(inc)) of 1300 nm; these measured beta1300 values ranged from 690 --> 1400 x 10(-30) esu. These data (i) show that these neutral dipolar molecules express substantial beta1300 values, (ii) highlight that reductions in the magnitude of the aromatic stabilization energy of (porphinato)metal-pendant arylethynyl groups have a significant impact upon the magnitude of the molecular hyperpolarizability, and (iii) provide insights into advantageous design modifications for closely related structures having potential utility in long-wavelength electrooptic applications.

7.
J Am Chem Soc ; 128(33): 10819-32, 2006 Aug 23.
Article in English | MEDLINE | ID: mdl-16910677

ABSTRACT

A combination of cyclic voltammetry (CV), UV-vis-NIR spectroscopy and spectroelectrochemistry, hyper-Rayleigh scattering (HRS) [including depolarization studies], Z-scan and degenerate four-wave mixing (DFWM) [including studies employing an optically transparent thin-layer electrochemical (OTTLE) cell to effect electrochemical switching of nonlinearity], pump-probe, and electroabsorption (EA) measurements have been used to comprehensively investigate the electronic, linear optical, and nonlinear optical (NLO) properties of nanoscopic pi-delocalizable electron-rich alkynylruthenium dendrimers, their precursor dendrons, and their linear analogues. CV, UV-vis-NIR spectroscopy, and UV-vis-NIR spectroelectrochemistry reveal that the reversible metal-centered oxidation processes in these complexes are accompanied by strong linear optical changes, "switching on" low-energy absorption bands, the frequency of which is tunable by ligand replacement. HRS studies at 1064 nm employing nanosecond pulses reveal large nonlinearities for these formally octupolar dendrimers; depolarization measurements are consistent with lack of coplanarity upon pi-framework extension through the metal. EA studies at 350-800 nm in a poly(methyl methacrylate) matrix are consistent with the important transitions having a charge-transfer exciton character that increases markedly on introduction of peripheral polarizing substituent. Time-resolved pump-probe studies employing 55 ps, 527 nm pulses reveal absorption saturation, the longest excited-state lifetime being observed for the dendrimer. Z-scan studies at 800 nm employing femtosecond pulses reveal strong two-photon absorption that increases significantly on progression from linear complex to zero- and then first-generation dendrimer with no loss of optical transparency. Both refractive and absorptive nonlinearity for selected alkynylruthenium dendrimers have been reversibly "switched" by employing the Z-scan technique at 800 and 1180 nm and 100-150 fs pulses, together with a specially modified OTTLE cell, complementary femtosecond time-resolved DFWM and transient absorption studies at 800 nm suggesting that the NLO effects originate in picosecond time scale processes.

9.
J Am Chem Soc ; 127(27): 9710-20, 2005 Jul 13.
Article in English | MEDLINE | ID: mdl-15998075

ABSTRACT

An extensive series of conjugated (porphinato)zinc(II)-based chromophores featuring nitrothiophenyl and nitrooligothiophenyl electron-accepting moieties has been synthesized using metal-catalyzed cross-coupling reactions involving [5-bromo-15-triisopropylsilylethynyl-10,20-diarylporphinato]zinc(II) and an unusual electron-rich Suzuki-porphyrin synthon, [5-(4-dimethylaminophenylethynyl)-15-(4',4',5',5'-tetramethyl[1',3',2']dioxaborolan-2'-yl)-10,20-diarylporphinato]zinc(II), with appropriately functionalized aryl and thienyl precursors. These donor-acceptor chromophores feature thiophenyl, [2,2']bithiophenyl, and [2,2';5',2' ']terthiophenyl units terminated with a 5-nitro group; one series of structures features these acceptor moieties appended directly to the porphyrin macrocycle meso-carbon position, while a second set utilizes an intervening meso-ethynyl moiety to modify porphyrin-to-thiophene conjugation. The dynamic hyperpolarizability of these compounds was determined from hyper-Rayleigh light scattering (HRS) measurements carried out at fundamental incident irradiation wavelengths (lambda(inc)) of 800 and 1300 nm; interestingly, measured beta(1300) values ranged from 650 --> 4350 x 10(-30) esu. The combined linear and nonlinear optical properties of these compounds challenge the classical concept of the nonlinearity/transparency tradeoff in charge-transfer chromophores: the magnitude of the molecular hyperpolarizability is observed to vary substantially despite approximately uniform ground-state absorptive signatures for a given porphyrin-to-thiophene linkage topology. These data show that these neutral dipolar molecules can express substantial beta(1300) values; such conjugated, electronically asymmetric porphyrin-thiophene chromophores may thus find utility for electrooptic applications at telecom-relevant wavelengths.

10.
J Chem Phys ; 122(23): 234713, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-16008479

ABSTRACT

The mixed electric-magnetic second-order nonlinear optical responses of oriented films of helicenes have been computed ab initio using the random phase approximation method and compared to the pure electric-dipole counterpart. It turns out that the mixed electric-magnetic responses can be of the same order of magnitude as the pure electric-dipole counterpart when there is no donor/acceptor (D/A) substituent or these D/A pairs are weak, i.e., when the pure electric-dipole response is small. When adding strong D/A substituents, the pure electric-dipole response increases substantially and much more than its mixed electric-magnetic counterpart. Consequently, the ratio between the mixed electric-magnetic and pure electric responses decreases. Although there is no general rule, the mixed responses evolve as a function of substitution quasi similarly to the pure electric contribution. This study confirms therefore the possibility of tuning the mixed electric-magnetic response by employing appropriate chiral molecules.

11.
Chem Commun (Camb) ; (21): 2747-9, 2005 Jun 07.
Article in English | MEDLINE | ID: mdl-15917941

ABSTRACT

Rigid, highly conjugated tetraalkynyl-calix[4]arenes synthesised via Sonogashira coupling give rise to improved second-order hyperpolarizability values as determined by hyper-Rayleigh scattering--a technique that in addition to X-ray crystallography also allows for the conformational analysis of the calixarene structures in solution.

14.
J Org Chem ; 69(15): 5077-81, 2004 Jul 23.
Article in English | MEDLINE | ID: mdl-15255739

ABSTRACT

The synthesis of a series of octopolar 1,3,5-tris(ethynylphenyl)benzenes via Sonogashira coupling is described, varying the substituents on both the central benzene core as well as the acetylenic periphery. In particular, systems bearing an electron-rich core and an electron-poor periphery are obtained that display advanced optical properties. The linear (by UV-vis and fluorescence spectroscopy) and second-order nonlinear optical properties are studied, the latter by hyper-Rayleigh scattering (HRS) (Hendrickx, E.; Clays, K.; Persoons, A. Acc. Chem. Res. 1998, 31, 675-683). The influence of different core and periphery substitution is revealed by the optical properties and confirms the possibility of fine-tuning those. Because of the presence of (one-photon) fluorescence for all compounds, femtosecond hyper-Rayleigh scattering has been applied (Olbrechts, G.; Strobbe, R.; Clays, K.; Persoons, A. Rev. Sci. Instrum. 1998, 69, 2233-2241). The implementation of the deconvolution in the frequency domain allows for a demodulation and a phase shift between immediate (nonlinear) scattering and time-delayed (multiphoton) fluorescence for high modulation frequencies (Wostyn, K.; Binnemans, K.; Clays, K.; Persoons, A. Rev. Sci. Instrum. 2001, 72, 3215-3220). In accordance with the linear optical properties, the second-order NLO properties can also be tuned by varying the core and peripheric substitutents.

15.
J Am Chem Soc ; 126(12): 3880-91, 2004 Mar 31.
Article in English | MEDLINE | ID: mdl-15038742

ABSTRACT

In this paper, we describe the extremely unusual optical properties of Ru(II)-based electron donor-acceptor (D-A) polyene and some closely related chromophores. For three different polyene series, the intense, visible d-->pi* metal-to-ligand charge-transfer bands unexpectedly blue-shift as the number of E-ethylene units (n) increases from 1 to 3, and the static first hyperpolarizabilities beta(0) determined via hyper-Rayleigh scattering and Stark spectroscopy maximize at n = 2, in marked contrast to other known D-A polyenes in which beta(0) increases steadily with n. Time-dependent density-functional theory and finite field calculations verify these empirical trends, which arise from the orbital structures of the complexes. This study illustrates that transition metal-based nonlinear optical chromophores can show very different behavior when compared with their more thoroughly studied purely organic counterparts.

16.
J Am Chem Soc ; 125(4): 862-3, 2003 Jan 29.
Article in English | MEDLINE | ID: mdl-12537472

ABSTRACT

We have used several techniques, including hyper-Rayleigh scattering and Stark spectroscopy, to investigate the effects of polyene chain length on the optical properties of complexes containing ruthenium(II) electron donor groups and pyridinium electron acceptors. In marked contrast with all other known donor-acceptor polyenes, conjugation extension beyond a single double bond in the dipolar complexes studied leads to blue-shifting of the intramolecular charge-transfer absorptions. Furthermore, the static first hyperpolarizabilities beta0 become maximized with trans-1,3-butadienyl linkages and then decrease in complexes with three CH=CH bonds. Our results clearly demonstrate that the molecular engineering criteria for metal-containing nonlinear optical chromophores can differ dramatically from those for purely organic compounds.

17.
J Am Chem Soc ; 124(46): 13806-13, 2002 Nov 20.
Article in English | MEDLINE | ID: mdl-12431110

ABSTRACT

The syntheses and electrooptic properties of a new family of nonlinear optical chromophores are reported. These species feature an ethyne-elaborated, highly polarizable porphyrinic component and metal polypyridyl complexes that serve as integral donor and acceptor elements. Examples of this structural motif include ruthenium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2' '-terpyridine)(2+) bis-hexafluorophosphate (Ru-PZn); osmium(II) [5-(4'-ethynyl-(2,2';6',2''-terpyridinyl))-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2''-terpyridine)(2+) bis-hexafluorophosphate (Os-PZn); ruthenium(II) [5-(4'-ethynyl-(2,2';6',2''-terpyridinyl))-15-(4'-nitrophenyl)ethynyl-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phen-yl)porphinato]zinc(II)-(2,2';6',2' '-terpyridine)(2+) bis-hexafluorophosphate (Ru-PZn-A); osmium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))-15-(4'-nitrophenyl)ethynyl-10,20-bis(2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-(2,2';6',2' '-terpyridine)(2+) bis-hexafluorophosphate (Os-PZn-A); and ruthenium(II) [5-(4'-ethynyl-(2,2';6',2' '-terpyridinyl))osmium(II)-15-(4'-ethynyl-(2,2';6',2''-terpyridinyl))-10,20-bis (2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato]zinc(II)-bis(2,2';6',2''-terpyridine)(4+) tetrakis-hexafluorophosphate (Ru-PZn-Os). The frequency dependence of the dynamic hyperpolarizability of these compounds was determined from hyperRayleigh light scattering (HRS) measurements carried out at fundamental incident irradiation wavelengths (lambda(inc)) of 800, 1064, and 1300 nm. These data show that (i) coupled oscillator photophysics and metal-mediated cross-coupling can be exploited to elaborate high beta(0) supermolecules that exhibit significant excited-state electronic communication between their respective pigment building blocks; (ii) high-stability metal polypyridyl compounds constitute an attractive alternative to electron releasing dialkyl- and diarylamino groups, the most commonly used donor moieties in a wide range of established nonlinear optical dyes; (iii) this design strategy enables ready elaboration of chromophores having extraordinarily large dynamic hyperpolarizabilities (beta(lambda) values) at telecommunication relevant wavelengths; and (iv) porphyrin B- and Q-state-derived static hyperpolarizabilities (beta(0) values) can be designed to have the same or opposite sign in these species, thus providing a new means to regulate the magnitude of lambda(inc)-specific dynamic hyperpolarizabilities.

19.
J Am Chem Soc ; 124(6): 992-7, 2002 Feb 13.
Article in English | MEDLINE | ID: mdl-11829607

ABSTRACT

Mono- and multilayers of amphiphilic [Ru(phen)(2)(dcC12bpy)](2+) (phen = 1,10-phenanthroline, dcC12bpy = 4,4'-caboxyl-2,2'-bipyridyl didodecyl ester) hybridized with a clay mineral have been prepared by a modified Langmuir-Blodgett method, and their structures and properties have been investigated. Formation of a hybrid monolayer of the Ru(II) complex cations and the clay platelets at an air-clay suspension interface was confirmed by surface pressure-molecular area (pi-A) isotherm measurement and atomic force microscopic (AFM) observation. Multilayers were fabricated by depositing the hybrid monolayers onto glass substrates. The absorbance at 492 nm due to the Ru(II) complex cation in the multilayer increased linearly with the increase in the layer number, indicating layer-by-layer deposition of the hybrid monolayers. Because no increase in the second-harmonic generation (SHG) signal from the multilayers against the layer number was observed, the orientation of the Ru(II) complex cations in the layer would be disturbed. The hydrophilic surface of the transferred hybrid monolayer can be converted to a hydrophobic surface by dipping it in an aqueous solution of octadecylammonium chloride (ODAH(+)Cl(-)). The multilayers modified with ODAH(+) showed a quadratic relation between the SHG intensity and the layer number. This means that the Ru(II) complex cations in the multilayer are successfully oriented in a noncentrosymmetric way by the conversion of the surface property. Both a racemic mixture and an enantiomer of the Ru(II) complex cations were employed to examine the chiral effect on the film properties. The chiral contribution to the SHG signal was enhanced in the multilayer modified with ODAH(+).

20.
Angew Chem Int Ed Engl ; 38(3): 366-369, 1999 Feb 01.
Article in English | MEDLINE | ID: mdl-29711640

ABSTRACT

Low-energy metal-to-ligand charge-transfer (MLCT) excitations are associated with the very large molecular nonlinear optical (NLO) coefficients, ß, of the complexes [RuII (NH3 )5 (N-R-4,4'-bipyridinium)]3+ (R=methyl, phenyl, or 4-acetylphenyl). Chemical oxidation to the RuIII forms causes bleaching of the MLCT absorptions and marked attenuation of the NLO responses. Both effects are completely reversed upon re-reduction, and the extent of the ß switching is about 10- to 20-fold.

SELECTION OF CITATIONS
SEARCH DETAIL
...