Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
J Environ Radioact ; 186: 54-62, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28870414

ABSTRACT

This work deals with analysis and modelling of the radionuclides 210Pb and210Po in the food-chain lichen-reindeer-man in addition to 210Po and 137Cs in top predators. By using the methods of Partial Least Square Regression (PLSR) the atmospheric deposition of 210Pb and 210Po is predicted at the sample locations. Dynamic modelling of the activity concentration with differential equations is fitted to the sample data. Reindeer lichen consumption, gastrointestinal absorption, organ distribution and elimination is derived from information in the literature. Dynamic modelling of transfer of 210Pb and 210Po to reindeer meat, liver and bone from lichen consumption, fitted well with data from Sweden and Finland from 1966 to 1971. The activity concentration of 210Pb in the skeleton in man is modelled by using the results of studying the kinetics of lead in skeleton and blood in lead-workers after end of occupational exposure. The result of modelling 210Pb and 210Po activity in skeleton matched well with concentrations of 210Pb and 210Po in teeth from reindeer-breeders and autopsy bone samples in Finland. The results of 210Po and 137Cs in different tissues of wolf, wolverine and lynx previously published, are analysed with multivariate data processing methods such as Principal Component Analysis PCA, and modelled with the method of Projection to Latent Structures, PLS, or Partial Least Square Regression PLSR.


Subject(s)
Food Chain , Models, Chemical , Radiation Monitoring/methods , Radioactive Pollutants/analysis , Animals , Cesium Radioisotopes , Finland , Humans , Lichens/chemistry , Lynx , Mustelidae , Polonium/analysis , Reindeer , Sweden , Wolves
2.
J Environ Radioact ; 138: 364-74, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24525181

ABSTRACT

In the present study we have investigated the activity concentrations of (210)Pb, (210)Po as well as (7)Be in surface air of the North and South Atlantic (1988-1989), the Arctic Ocean (1991), and along the coastline of Siberia (1994) during succeeding expeditions in the Swedish Polar Research program. During the cruises in the Arctic Ocean during 1991-07-28 to 1991-10-04 the average air concentrations of (7)Be was 0.6 ± 0.4 mBq/m(3), (210)Pb 40 ± 4 µBq/m(3) and (210)Po-38 ± 10 µBq/m(3). During the Swedish-Russian Tundra Ecology-94 expedition along the Siberian coastline the average air concentrations of (7)Be and (210)Pb measured during May-July were 11 ± 3, and 2.4 ± 0.4 mBq/m(3), and during July-September they were 7.2 ± 2 and 2.7 ± 1.1 mBq/m(3) respectively. The results from measurements of the activity concentration of (210)Pb in the air over the Arctic Ocean vary between 75 and 176 µBq/m(3). In the air close to land masses, however, the activity concentration of (210)Pb in the air increases to 269-2712 µBq/m(3). The activity concentration of (7)Be in the South Atlantic during the cruise down to Antarctica varied between 1.3 and 1.7 with an average of 1.5 ± 0.8 mBq/m(3). The activity concentration of (210)Pb in the South Atlantic down to Antarctica varied between 6 and 14 µBq/m(3). At the Equator the activity concentration recorded in November 1988 was 630 µBq/m(3) and in April 1989 it was 260 µBq/m(3). The average activity concentration of (210)Pb during the route Gothenburg-Montevideo in 1988 was 290 and on the return Montevideo-Gothenburg it was 230 µBq/m(3). The activity concentration of (210)Po in the South Atlantic down to Antarctica varied between 15 and 58 µBq/m(3). At the Equator the activity concentration in November 1988 was 170 and in April 1989 it was 70 µBq/m(3). The average activity concentration of (210)Po during the route Gothenburg-Montevideo in 1988 was 63 and on the return Montevideo-Gothenburg it was 60 µBq/m(3). The average of the activity concentrations in the Antarctic air of (210)Pb was 27 ± 10 µBq/m(3) and of (210)Po it was 12 ± 7 µBq/m(3). All our results were compiled together with other published data, and the global latitudinal distribution of (210)Pb was converted to total annual deposition (Bq/m(2)/a) and fitted to a 4th degree polynomial. By using the global latitudinal distribution of (210)Po/(210)Pb-activity ratio from our own results the global latitudinal distribution of (210)Po annual deposition was derived.


Subject(s)
Air Pollutants, Radioactive/analysis , Beryllium/analysis , Lead Radioisotopes/analysis , Polonium/analysis , Radioisotopes/analysis , Antarctic Regions , Arctic Regions , Radiation Monitoring , Siberia
3.
Bioelectromagnetics ; 33(7): 535-42, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22487968

ABSTRACT

The question whether very weak, low frequency magnetic fields can affect biological matter is still under debate. The theoretical possibility of such an interaction is often questioned and the site of interaction in the cell is unknown. In the present study, the influence of extremely weak 60 Hz magnetic fields on the transport of Ca(2+) was studied in a biological system consisting of highly purified plasma membrane vesicles. We tested a newly proposed quantum mechanical model postulates that polarization of hydrogen nuclei can elicit a biological effect. Vesicles were exposed for half an hour at 32 °C and the calcium efflux was studied using radioactive (45) Ca(2+) as a tracer. A static magnetic field of 26 µT and time-varying magnetic fields with a frequency of 60 Hz and amplitudes between 0.6 and 6.3 µT were used. The predictions of the model, proposed by Lednev, that at a frequency of 60 Hz the biological effect under investigation would significantly be altered at the amplitudes of 1.3 and 3.9 µT could not be confirmed.


Subject(s)
Calcium/metabolism , Cell Membrane/metabolism , Cell Membrane/radiation effects , Electromagnetic Fields , Models, Biological , Biological Transport/radiation effects , Calcium Channels/metabolism , Magnetic Resonance Spectroscopy , Spinacia oleracea/cytology , Spinacia oleracea/radiation effects , Time
4.
J Environ Radioact ; 102(5): 420-9, 2011 May.
Article in English | MEDLINE | ID: mdl-21377252

ABSTRACT

The radionuclides (210)Po and (210)Pb widely present in the terrestrial environment are the final long-lived radionuclides in the decay of (238)U in the earth's crust. Their presence in the atmosphere is due to the decay of (222)Rn diffusing from the ground. The range of activity concentrations in ground level air for (210)Po is 0.03-0.3 Bq m(-3) and for (210)Pb 0.2-1.5 Bq m(-3). In drinking water from private wells the activity concentration of (210)Po is in the order of 7-48 mBq l(-1) and for (210)Pb around 11-40 mBq l(-1). From water works, however, the activity concentration for both (210)Po and (210)Pb is only in the order of 3 mBq l(-1). Mosses, lichens and peat have a high efficiency in capturing (210)Po and (210)Pb from atmospheric fallout and exhibit an inventory of both (210)Po and (210)Pb in the order of 0.5-5 kBq m(-2) in mosses and in lichens around 0.6 kBq m(-2). The activity concentrations in lichens lies around 250 Bq kg(-1), dry mass. Reindeer and caribou graze lichen which results in an activity concentration of (210)Po and (210)Pb of about 1-15 Bq kg(-1) in meat from these animals. The food chain lichen-reindeer or caribou, and Man constitutes a unique model for studying the uptake and retention of (210)Po and (210)Pb in humans. The effective annual dose due to (210)Po and (210)Pb in people with high consumption of reindeer/caribou meat is estimated to be around 260 and 132 µSv a(-1) respectively. In soils, (210)Po is adsorbed to clay and organic colloids and the activity concentration varies with soil type and also correlates with the amount of atmospheric precipitation. The average activity concentration levels of (210)Po in various soils are in the range of 20-240 Bq kg(-1). Plants become contaminated with radioactive nuclides both by absorption from the soil (supported Po) and by deposition of radioactive fallout on the plants directly (unsupported Po). In fresh leafy plants the level of (210)Po is particularly high as the result of the direct deposition of (222)Rn daughters from atmospheric deposition. Tobacco is a terrestrial product with high activity concentrations of (210)Po and (210)Pb. The overall average activity concentration of (210)Po is 13 ± 2 Bq kg(-1). It is rather constant over time and by geographical origin. The average median daily dietary intakes of (210)Po and (210)Pb for the adult world population was estimated to 160 mBq day(-1) and 110 mBq day(-1), corresponding to annual effective doses of 70 µSv a(-1) and 28 µSv a(-1), respectively. The dietary intakes of (210)Po and (210)Pb from vegetarian food was estimated to only 70 mBq day(-1) and 40 mBq day(-1) corresponding to annual effective doses of 30.6 µSv a(-1) and 10 µSv a(-1), respectively. Since the activity concentration of (210)Po and (210)Pb in seafood is significantly higher than in vegetarian food the effective dose to populations consuming a lot of seafood might be 5-15 fold higher.


Subject(s)
Lead Radioisotopes/analysis , Polonium/analysis , Radiation Monitoring/methods , Radioactive Pollutants/analysis , Animals , Food Chain , History, 20th Century , History, 21st Century , Humans , Radiation Monitoring/history , Radon/analysis
5.
Radiat Res ; 173(4): 433-40, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20334515

ABSTRACT

Single-fraction radiation therapy with 5 or 15 Gy (60)Co gamma radiation was combined with intraperitoneal injections of syngeneic interferon gamma (IFN-gamma)-transfected cells in rats with intracerebral N29 or N32 glioma tumors at days 7, 21 and 35 after inoculation. For intracerebral N29 tumors, single-fraction radiation therapy with 5 or 15 Gy had no significant effect on the survival time. Immunization with IFN-gamma-transfected N29 cells significantly increased the survival time by 61%. Single-fraction radiation therapy with 5 Gy combined with immunization increased the survival time significantly by 87% and complete remissions by 75% while with 15 Gy the survival time increased 45% with 38% complete remissions. For intracerebral N32 tumors, single-fraction radiation therapy with 15 Gy increased the survival time significantly by 20%. Immunization by itself had no significant effect with IFN-gamma-transfected N32 cells, but combined with 15 Gy single-fraction radiation therapy it increased survival time significantly by 40%, although there were no complete remissions. Based on these findings, we suggest a new therapeutic regimen for malignant glioma using single-fraction radiation therapy with a target absorbed dose of the order of 5-10 Gy combined with clinically verified immunotherapy.


Subject(s)
Brain Neoplasms/therapy , Genetic Therapy/methods , Glioma/therapy , Immunomodulation , Interferon-gamma/administration & dosage , Animals , Brain Neoplasms/immunology , Cell Line, Tumor , Combined Modality Therapy , Dose Fractionation, Radiation , Dose-Response Relationship, Radiation , Female , Glioma/immunology , Injections, Intraperitoneal , Interferon-gamma/genetics , Interferon-gamma/immunology , Male , Radiotherapy Dosage , Rats , Rats, Inbred F344 , Survival Analysis , Survival Rate , Treatment Outcome
6.
Pathophysiology ; 16(2-3): 103-12, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19345073

ABSTRACT

Microwaves were for the first time produced by humans in 1886 when radio waves were broadcasted and received. Until then microwaves had only existed as a part of the cosmic background radiation since the birth of universe. By the following utilization of microwaves in telegraph communication, radars, television and above all, in the modern mobile phone technology, mankind is today exposed to microwaves at a level up to 10(20) times the original background radiation since the birth of universe. Our group has earlier shown that the electromagnetic radiation emitted by mobile phones alters the permeability of the blood-brain barrier (BBB), resulting in albumin extravasation immediately and 14 days after 2h of exposure. In the background section of this report, we present a thorough review of the literature on the demonstrated effects (or lack of effects) of microwave exposure upon the BBB. Furthermore, we have continued our own studies by investigating the effects of GSM mobile phone radiation upon the blood-brain barrier permeability of rats 7 days after one occasion of 2h of exposure. Forty-eight rats were exposed in TEM-cells for 2h at non-thermal specific absorption rates (SARs) of 0mW/kg, 0.12mW/kg, 1.2mW/kg, 12mW/kg and 120mW/kg. Albumin extravasation over the BBB, neuronal albumin uptake and neuronal damage were assessed. Albumin extravasation was enhanced in the mobile phone exposed rats as compared to sham controls after this 7-day recovery period (Fisher's exact probability test, p=0.04 and Kruskal-Wallis, p=0.012), at the SAR-value of 12mW/kg (Mann-Whitney, p=0.007) and with a trend of increased albumin extravasation also at the SAR-values of 0.12mW/kg and 120mW/kg. There was a low, but significant correlation between the exposure level (SAR-value) and occurrence of focal albumin extravasation (r(s)=0.33; p=0.04). The present findings are in agreement with our earlier studies where we have seen increased BBB permeability immediately and 14 days after exposure. We here discuss the present findings as well as the previous results of altered BBB permeability from our and other laboratories.

7.
Bioelectromagnetics ; 30(2): 129-41, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18839414

ABSTRACT

We have recently described frequency-dependent effects of mobile phone microwaves (MWs) of global system for mobile communication (GSM) on human lymphocytes from persons reporting hypersensitivity to electromagnetic fields and healthy persons. Contrary to GSM, universal global telecommunications system (UMTS) mobile phones emit wide-band MW signals. Hypothetically, UMTS MWs may result in higher biological effects compared to GSM signal because of eventual "effective" frequencies within the wideband. Here, we report for the first time that UMTS MWs affect chromatin and inhibit formation of DNA double-strand breaks co-localizing 53BP1/gamma-H2AX DNA repair foci in human lymphocytes from hypersensitive and healthy persons and confirm that effects of GSM MWs depend on carrier frequency. Remarkably, the effects of MWs on 53BP1/gamma-H2AX foci persisted up to 72 h following exposure of cells, even longer than the stress response following heat shock. The data are in line with the hypothesis that the type of signal, UMTS MWs, may have higher biological efficiency and possibly larger health risk effects compared to GSM radiation emissions. No significant differences in effects between groups of healthy and hypersensitive subjects were observed, except for the effects of UMTS MWs and GSM-915 MHz MWs on the formation of the DNA repair foci, which were different for hypersensitive (P < 0.02[53BP1]//0.01[gamma-H2AX]) but not for control subjects (P > 0.05). The non-parametric statistics used here did not indicate specificity of the differences revealed between the effects of GSM and UMTS MWs on cells from hypersensitive subjects and more data are needed to study the nature of these differences.


Subject(s)
Cell Phone , DNA Repair , Histones/genetics , Intracellular Signaling Peptides and Proteins/genetics , Lymphocytes/radiation effects , Microwaves , Adult , Case-Control Studies , Female , Humans , Male , Middle Aged , Tumor Suppressor p53-Binding Protein 1
8.
Brain Res Bull ; 77(5): 257-63, 2008 Nov 25.
Article in English | MEDLINE | ID: mdl-18782606

ABSTRACT

In order to mimic the real life situation, with often life-long exposure to the electromagnetic fields emitted by mobile phones, we have investigated in a rat model the effects of repeated exposures under a long period to Global System for Mobile Communication-900 MHz (GSM-900) radiation. Out of a total of 56 rats, 32 were exposed once weekly in a 2-h period, for totally 55 weeks, at different average whole-body specific absorption rates (SAR) (of in average 0.6 and 60 mW/kg at the initiation of the experimental period). The animals were exposed in a transverse electromagnetic transmission line chamber (TEM-cell) to radiation emitted by a GSM-900 test phone. Sixteen animals were sham exposed and eight animals were cage controls, which never left the animal house. After behavioural tests, 5-7 weeks after the last exposure, the brains were evaluated for histopathological alterations such as albumin extravasation, dark neurons, lipofuscin aggregation and signs of cytoskeletal and neuritic neuronal changes of the type seen in human ageing. In this study, no significant alteration of any these histopathological parameters was found, when comparing the GSM exposed animals to the sham exposed controls.


Subject(s)
Brain , Cell Phone , Electromagnetic Fields/adverse effects , Aging/radiation effects , Animals , Behavior, Animal/radiation effects , Blood-Brain Barrier/radiation effects , Brain/pathology , Brain/radiation effects , Dose-Response Relationship, Radiation , Female , Humans , Male , Neurons/cytology , Neurons/radiation effects , Rats , Rats, Inbred F344 , Whole-Body Irradiation
9.
Electromagn Biol Med ; 27(3): 215-29, 2008.
Article in English | MEDLINE | ID: mdl-18821198

ABSTRACT

We investigated the effects of global system for mobile communication (GSM) microwave exposure on the permeability of the blood-brain barrier and signs of neuronal damage in rats using a real GSM programmable mobile phone in the 900 MHz band. Ninety-six non-anaesthetized rats were either exposed to microwaves or sham exposed in TEM-cells for 2 h at specific absorption rates of average whole-body Specific Absorption Rates (SAR) of 0.12, 1.2, 12, or 120 mW/kg. The rats were sacrificed after a recovery time of either 14 or 28 d, following exposure and the extravazation of albumin, its uptake into neurons, and occurrence of damaged neurons was assessed. Albumin extravazation and also its uptake into neurons was seen to be enhanced after 14 d (Kruskal Wallis test: p = 0.02 and 0.002, respectively), but not after a 28 d recovery period. The occurrence of dark neurons in the rat brains, on the other hand, was enhanced later, after 28 d (p = 0.02). Furthermore, in the 28-d brain samples, neuronal albumin uptake was significantly correlated to occurrence of damaged neurons (Spearman r = 0.41; p < 0.01).


Subject(s)
Blood-Brain Barrier/metabolism , Blood-Brain Barrier/radiation effects , Cell Phone , Microwaves/adverse effects , Neurons/pathology , Neurons/radiation effects , Absorption , Albumins/metabolism , Animals , Female , Hippocampus/cytology , Hippocampus/metabolism , Hippocampus/radiation effects , Male , Neurons/metabolism , Permeability/radiation effects , Rats , Time Factors
10.
Electromagn Biol Med ; 27(2): 103-26, 2008.
Article in English | MEDLINE | ID: mdl-18568929

ABSTRACT

During the last century, mankind has introduced electricity and during the very last decades, the microwaves of the modern communication society have spread a totally new entity--the radiofrequency fields--around the world. How does this affect biology on Earth? The mammalian brain is protected by the blood-brain barrier, which prevents harmful substances from reaching the brain tissue. There is evidence that exposure to electromagnetic fields at non thermal levels disrupts this barrier. In this review, the scientific findings in this field are presented. The result is a complex picture, where some studies show effects on the blood-brain barrier, whereas others do not. Possible mechanisms for the interactions between electromagnetic fields and the living organisms are discussed. Demonstrated effects on the blood-brain barrier, as well as a series of other effects upon biology, have caused societal anxiety. Continued research is needed to come to an understanding of how these possible effects can be neutralized, or at least reduced. Furthermore, it should be kept in mind that proven effects on biology also should have positive potentials, e.g., for medical use.


Subject(s)
Blood-Brain Barrier/physiology , Blood-Brain Barrier/radiation effects , Capillary Permeability/physiology , Capillary Permeability/radiation effects , Electricity , Radio Waves , Animals , Electromagnetic Fields , Humans , Models, Cardiovascular
11.
Bioelectromagnetics ; 29(3): 219-32, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18044737

ABSTRACT

Considering the frequent use of mobile phones, we have directed attention to possible implications on cognitive functions. In this study we investigated in a rat model the long-term effects of protracted exposure to Global System for Mobile Communication-900 MHz (GSM-900) radiation. Out of a total of 56 rats, 32 were exposed for 2 h each week for 55 weeks to radio-frequency electromagnetic radiation at different SAR levels (0.6 and 60 mW/kg at the initiation of the experimental period) emitted by a (GSM-900) test phone. Sixteen animals were sham exposed and eight animals were cage controls, which never left the animal house. After this protracted exposure, GSM-900 exposed rats were compared to sham exposed controls. Effects on exploratory behaviour were evaluated in the open-field test, in which no difference was seen. Effects on cognitive functions were evaluated in the episodic-like memory test. In our study, GSM exposed rats had impaired memory for objects and their temporal order of presentation, compared to sham exposed controls (P = 0.02). Detecting the place in which an object was presented was not affected by GSM exposure. Our results suggest significantly reduced memory functions in rats after GSM microwave exposure (P = 0.02).


Subject(s)
Cell Phone , Cognition Disorders/etiology , Cognition Disorders/physiopathology , Cognition/radiation effects , Memory/radiation effects , Microwaves , Whole-Body Irradiation/methods , Animals , Female , Male , Rats
12.
Bioelectromagnetics ; 27(4): 295-306, 2006 May.
Article in English | MEDLINE | ID: mdl-16511873

ABSTRACT

We investigated whether exposure of rat brain to microwaves (MWs) of global system for mobile communication (GSM) induces DNA breaks, changes in chromatin conformation and in gene expression. An exposure installation was used based on a test mobile phone employing a GSM signal at 915 MHz, all standard modulations included, output power level in pulses 2 W, specific absorption rate (SAR) 0.4 mW/g. Rats were exposed or sham exposed to MWs during 2 h. After exposure, cell suspensions were prepared from brain samples, as well as from spleen and thymus. For analysis of gene expression patterns, total RNA was extracted from cerebellum. Changes in chromatin conformation, which are indicative of stress response and genotoxic effects, were measured by the method of anomalous viscosity time dependencies (AVTD). DNA double strand breaks (DSBs) were analyzed by pulsed-field gel electrophoresis (PFGE). Effects of MW exposure were observed on neither conformation of chromatin nor DNA DSBs. Gene expression profiles were obtained by Affymetrix U34 GeneChips representing 8800 rat genes and analyzed with the Affymetrix Microarray Suite (MAS) 5.0 software. In cerebellum from all exposed animals, 11 genes were upregulated in a range of 1.34-2.74 fold and one gene was downregulated 0.48-fold (P < .0025). The induced genes encode proteins with diverse functions including neurotransmitter regulation, blood-brain barrier (BBB), and melatonin production. The data shows that GSM MWs at 915 MHz did not induce PFGE-detectable DNA double stranded breaks or changes in chromatin conformation, but affected expression of genes in rat brain cells.


Subject(s)
Brain/radiation effects , Chromatin/radiation effects , DNA Damage , DNA/radiation effects , Gene Expression/radiation effects , Microwaves , Animals , Blotting, Western , Chromatin/chemistry , Electrophoresis, Gel, Pulsed-Field , Male , Oligonucleotide Array Sequence Analysis , Rats , Rats, Inbred F344
13.
Cancer Biother Radiopharm ; 21(6): 623-35, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17257078

ABSTRACT

OBJECTIVE: In vivo electropermeabilization of cell membranes in rat muscle tissue cause a significant decrease of the electrical impedance, in the frequency region of 1-10 kHz. We aimed to study how the 99mTc-DTPA uptake in the electropermeabilized region correlates to the change of admittance Y = 1/absZ, where Z is the measured impedance. METHODS: The electropermeabilization was performed in vivo by applying high-voltage (0.5-2 kV) short (0.1-2 ms) pulses through gold-plated needle electrodes in skeletal muscle. The impedance was measured before and after each electropermeabilization pulse. The uptake of 99mTc-DTPA uptake in the electropermeabilized region was measured after 6 and 24 hours with a gamma camera. RESULTS: The pulse shape (square and exponential), duration, and amplitude of the applied electric field were varied, and electropermeabilization efficiency was evaluated using the various measurement modalities. Good correlations were found (correlation coefficient approximately 0.9) between the 99mTc-DTPA uptake in the electropermeabilized and control "region of interest" the admittance ratio Y (post-treatment)/Y (pretreatment), and charge displacement parameter Q. CONCLUSION: The electrical impedance measurements method can be utilized in clinical settings to verify the efficiency of electropermeabilization applied to chemotherapy and to power RNAi (RNA-interference) and DNA-plasmid transfection in vaccination, immunization, and gene-therapy.


Subject(s)
Electrons , Muscles/drug effects , Technetium Tc 99m Pentetate/pharmacology , Animals , Electric Impedance , Electroporation , Female , Male , Rats , Time Factors
14.
Biotechnol Bioeng ; 92(3): 267-76, 2005 Nov 05.
Article in English | MEDLINE | ID: mdl-16161165

ABSTRACT

Bioimpedance spectrometry was applied to study cell viability and pEGFP plasmid-transfection efficiency in electroporation (EP) of 20,000 HeLa cells with 0.3 microg DNA in 90 microl low conductivity 0.32 M sucrose medium of pH 7.5. Monopolar rectangular pulses, of field strength 75 V/mm, and pulse length 0.1 ms were applied in 1-16 repetitions with a 10-sec pause interval between pulses. Surviving cells were stained by crystal violet and counted using a confocal microscope. Transfected cells were fixed with 10% formaldehyde and counted as green spots in a fluorescence microscope. In the present investigation we used the method of bioimpedance spectrometry to analyze the effect of EP on survival and transfection ratio of cells in suspension. DC and low-frequency AC currents preferably pass through the medium due to the high impedance of the cell membrane. At frequencies above 10 kHz the impedance of the cell membrane starts to decrease and the impedance value of the cell suspension approach a lower limit value Rinfinity at infinite frequency. Recording of electrical impedance spectra of cells in culture was performed over a frequency range of 10 Hz to 125 kHz, allowing separation of the contribution from extracellular space and that of the cell membranes. A parallel resistance capacitance model of the cell suspension was used to evaluate the response of applying EP pulses. The values of the collective membrane resistance RM decay exponentially (r2=0.995) with the number of applied pulses. The ratio of the extrapolated value of the intact membrane resistance before pulsing, RM,0, and the value RM,N after each pulse makes an index of the effect of electroporation on the cells. The ratio RM,N/RM,0 as well as the relative change of the dissipation factor, tandelta, on the "Loss Change Index" (LCI) fits well a dose-response model (r2=0.98) with the number of applied pulses. The changes in the model parameters membrane resistance DeltaRM=[1-RM,N/RM,o] and loss factor [1-tandelta0/tandeltaN] correlate well with the transfection ratio and fraction of dead cells. Those parameters were used for power-assisted electroporation in monitoring, controlling, and optimizing the EP procedure.


Subject(s)
Electroporation/methods , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Models, Biological , Plasmids/administration & dosage , Plasmids/pharmacokinetics , Transfection/methods , Cell Membrane/physiology , Cell Membrane/radiation effects , Cell Survival/physiology , Computer Simulation , Electric Impedance , Electromagnetic Fields , Green Fluorescent Proteins/administration & dosage , HeLa Cells , Humans , Recombinant Proteins/metabolism , Spectrum Analysis/methods
15.
Environ Health Perspect ; 113(9): 1172-7, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16140623

ABSTRACT

The data on biologic effects of nonthermal microwaves (MWs) from mobile telephones are diverse, and these effects are presently ignored by safety standards of the International Commission for Non-Ionizing Radiation Protection (ICNIRP). In the present study, we investigated effects of MWs of Global System for Mobile Communication (GSM) at different carrier frequencies on human lymphocytes from healthy persons and from persons reporting hypersensitivity to electromagnetic fields (EMFs). We measured the changes in chromatin conformation, which are indicative of stress response and genotoxic effects, by the method of anomalous viscosity time dependence, and we analyzed tumor suppressor p53-binding protein 1 (53BP1) and phosphorylated histone H2AX (gamma-H2AX), which have been shown to colocalize in distinct foci with DNA double-strand breaks (DSBs), using immunofluorescence confocal laser microscopy. We found that MWs from GSM mobile telephones affect chromatin conformation and 53BP1/gamma-H2AX foci similar to heat shock. For the first time, we report here that effects of MWs from mobile telephones on human lymphocytes are dependent on carrier frequency. On average, the same response was observed in lymphocytes from hypersensitive and healthy subjects.


Subject(s)
Chromatin/radiation effects , Histones/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lymphocytes/radiation effects , Microwaves/adverse effects , Phosphoproteins/metabolism , Adult , Cell Phone , Cells, Cultured , Electromagnetic Fields , Humans , Hypersensitivity , Lymphocytes/pathology , Male , Middle Aged , Tumor Suppressor p53-Binding Protein 1
16.
Bioelectromagnetics ; 26(3): 173-84, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15768430

ABSTRACT

We used exposure to microwaves from a global system for mobile communication (GSM) mobile phone (915 MHz, specific absorption rate (SAR) 37 mW/kg) and power frequency magnetic field (50 Hz, 15 muT peak value) to investigate the response of lymphocytes from healthy subjects and from persons reporting hypersensitivity to electromagnetic field (EMF). The hypersensitive and healthy donors were matched by gender and age and the data were analyzed blind to treatment condition. The changes in chromatin conformation were measured with the method of anomalous viscosity time dependencies (AVTD). 53BP1 protein, which has been shown to colocalize in foci with DNA double strand breaks (DSBs), was analyzed by immunostaining in situ. Exposure at room temperature to either 915 MHz or 50 Hz resulted in significant condensation of chromatin, shown as AVTD changes, which was similar to the effect of heat shock at 41 degrees C. No significant differences in responses between normal and hypersensitive subjects were detected. Neither 915 MHz nor 50 Hz exposure induced 53BP1 foci. On the contrary, a distinct decrease in background level of 53BP1 signaling was observed upon these exposures as well as after heat shock treatments. This decrease correlated with the AVTD data and may indicate decrease in accessibility of 53BP1 to antibodies because of stress-induced chromatin condensation. Apoptosis was determined by morphological changes and by apoptotic fragmentation of DNA as analyzed by pulsed-field gel electrophoresis (PFGE). No apoptosis was induced by exposure to 50 Hz and 915 MHz microwaves. In conclusion, 50 Hz magnetic field and 915 MHz microwaves under specified conditions of exposure induced comparable responses in lymphocytes from healthy and hypersensitive donors that were similar but not identical to stress response induced by heat shock.


Subject(s)
DNA Damage , Electromagnetic Fields , Hypersensitivity/blood , Hypersensitivity/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lymphocytes/metabolism , Lymphocytes/radiation effects , Microwaves , Phosphoproteins/metabolism , Adult , Apoptosis/radiation effects , Cell Phone , Cells, Cultured , Chromatin/radiation effects , Heat-Shock Response/radiation effects , Humans , Hypersensitivity/pathology , In Vitro Techniques , Lymphocytes/pathology , Male , Middle Aged , Nucleic Acid Conformation/radiation effects , Single-Blind Method , Tumor Suppressor p53-Binding Protein 1
17.
Acta Oncol ; 43(4): 404-11, 2004.
Article in English | MEDLINE | ID: mdl-15303503

ABSTRACT

The verification of the correctness of planned and executed treatments is imperative for safety in radiotherapy. The purpose of the present work is to describe and evaluate the quality assurance (QA) procedures for patient dosimetry implemented at the boron neutron capture therapy (BNCT) facility at Studsvik, Sweden. The dosimetric complexity of the mixed neutron-photon field during BNCT suggests a careful verification of routine procedures, specifically the treatment planning calculations. In the present study, two methods for QA of patient dosimetry are presented. The first is executed prior to radiotherapy and involves an independent check of the planned absorbed dose to be delivered to a point in the patient for each treatment field. The second QA procedure involves in vivo dosimetry measurements using post-treatment activation analysis. Absorbed dose conversion factors taking the difference in material composition and geometry of the patient and the PMMA phantom used for reference dosimetry were determined using the Monte Carlo method. The agreement of the QA procedure prior to radiotherapy reveals an acceptably small deviation for 60 treatment fields of +/-4.2% (1 SD), while the in vivo dosimetry method presented may benefit from improvements, as the deviations observed were quite substantial (+/- 12%, 1 SD), and were unlikely to be due to actual errors in the clinical dosimetry


Subject(s)
Boron Neutron Capture Therapy/methods , Radiation Monitoring , Radiotherapy Planning, Computer-Assisted , Brain Neoplasms/radiotherapy , Dose-Response Relationship, Radiation , Humans , Monte Carlo Method , Phantoms, Imaging , Quality Control , Radiation Injuries/prevention & control , Radiotherapy Dosage , Sensitivity and Specificity
18.
Technol Cancer Res Treat ; 2(5): 459-70, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14529312

ABSTRACT

The aim of the present study is to develop a mathematical model for evaluating therapeutic response of combined treatment modalities. The study was performed in rats of the Fischer-344 strain with rat glioma N32 or N29 tumors implanted subcutaneously on the thigh of the hind leg. Pulsed electric fields, PEF, with 16 exponentially decaying pulses with a maximum electric field strength of 140 V/mm and t(1/e)= 1 ms were first applied to the tumors. Then within 5 min radiation therapy with (60)Co-gamma radiation, RT, was given in daily fractions of 5 Gy. The animals were arranged into one group of controls and 3 groups of different kind of treatments: PEF only, RT only or combination of PEF + RT. At about 4 weeks after inoculation, the tumors were given the treatment sessions during one week. In 2 experimental series with totally 52 rats with N32 tumors, of which 16 were controls, were given 4 sessions of PEF treatments and RT (totally 20 Gy). In a special experimental series with totally 56 rats with N32 tumors, of which 10 were controls, the different groups were given 1, 2, 3 or 4 treatment sessions respectively. Another strain of glioma tumor, N29 with 62 tumors of which 14 were controls was studied in 2 series given 4PEF + 4RT and 2PEF + 4RT respectively. Fitting the data obtained from consecutive measurements of tumor volume (TV) of each individual tumor to an exponential model TV = TV(0). exp[TGR.t] estimated the tumor growth rate (TGR % per day) after the first day of treatment (t = 0). The TGR of N32 tumors treated with the combination of 4PEF + 4RT are significantly decreased compared to the controls (p < 0.0001), compared to RT alone (p < 0.0001) and compared to PEF alone (p < 0.001). The combined treatment of N32 gives significant effect on the tumor growth rate after 2, 3 and 4 treatment session while RT alone seems to be most efficient after one treatment of 5 Gy and PEF alone is most efficient after 2 treatments at 2 consecutive days. The TGR of N29 tumors treated with the combination of 4PEF + 4RT are significantly decreased compared to the controls (p < 0.05) but the combination of 2PEF + 4RT was more effective (p < 0.005). The specific therapeutic effect STE is defined as the difference between the average tumor growth rates of controls and exposed tumors divided by the average tumor growth rate of the controls. With 4PEF treatments alone the average STE value was 0.32 for N32 tumors and 0 for N29; for 4RT alone the STE values were 0.29 and 0.42 respectively, and for combined treatments 4PEF + 4RT 0.67 and 0.17 respectively. For the N29 tumors treated with 2PEF + 4RT the STE value was 0.53. The therapeutic enhancement ratio, TER, value increase with the number of treatment sessions and the TER of the combined treatments is above 1 in two of the N32 series, which indicates a synergistic effect of 4PEF + 4RT. This work demonstrate the use of our model for analyzing the combination PEF + RT, but it can also be used for evaluation the therapeutic effects of combining RT with chemotherapy or immunogenetic therapy.


Subject(s)
Brain Neoplasms/radiotherapy , Brain Neoplasms/therapy , Disease Models, Animal , Electric Stimulation Therapy , Gamma Rays , Glioma/radiotherapy , Glioma/therapy , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cobalt Radioisotopes , Disease Progression , Electricity , Glioma/pathology , Neoplasm Transplantation , Rats , Rats, Inbred F344 , Survival Rate
19.
Environ Health Perspect ; 111(7): 881-3; discussion A408, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12782486

ABSTRACT

The possible risks of radio-frequency electromagnetic fields for the human body is a growing concern for our society. We have previously shown that weak pulsed microwaves give rise to a significant leakage of albumin through the blood-brain barrier. In this study we investigated whether a pathologic leakage across the blood-brain barrier might be combined with damage to the neurons. Three groups each of eight rats were exposed for 2 hr to Global System for Mobile Communications (GSM) mobile phone electromagnetic fields of different strengths. We found highly significant (p< 0.002) evidence for neuronal damage in the cortex, hippocampus, and basal ganglia in the brains of exposed rats.


Subject(s)
Brain/radiation effects , Cell Phone , Electromagnetic Fields/adverse effects , Neurons/radiation effects , Albumins/metabolism , Animals , Blood-Brain Barrier/radiation effects , Brain/cytology , Female , Male , Microwaves/adverse effects , Rats , Rats, Inbred F344 , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...