Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PPAR Res ; 2021: 8880042, 2021.
Article in English | MEDLINE | ID: mdl-34422027

ABSTRACT

The objective of this study was to investigate the relationship of the polymorphism in Intron 7 G/C (rs 4253778) of the peroxisome proliferator-activated receptor alpha (PPARα) gene with the magnitude of changes in the body composition of an overweight and obese population that underwent an aerobic training program. Fifty-eight previously inactive men and women, body mass index (BMI) 31.5 ± 2.8 kg/m2, 46.5% (n = 27) genotyped as CC genotype and 53.5% (n = 31) as CA+AA, underwent a 12-week aerobic training (walking/running). Aerobic capacity (ergospirometry), body composition (DXA), and nutritional assessment were made before and 48 h after the experimental protocol. Two-way ANOVA, chi-square test, and logistic regression were used (p < 0.05). Twenty-seven volunteers (46.5%) were identified as CC genotype and 31 (53.5%) as CA+AA genotype. Time-group interaction showed that there was no difference in these between two allele groups. However, differences in distribution of respondents or nonresponders according to allele A were identified for fat mass (p ≤ 0.003), percentage fat mass (p ≤ 0.002), the waist (p ≤ 0.009), abdomen (p ≤ 0.000), and hip (p ≤ 0.001), this difference being independent for the fat mass. Meanwhile, sex, age, and nutritional management have also been found to be influential factors. It is concluded that the PPARα gene is involved in varying body composition in response to an aerobic training program.

2.
J Am Coll Nutr ; 35(6): 514-520, 2016 08.
Article in English | MEDLINE | ID: mdl-26934084

ABSTRACT

Dyslipidemia and genetic polymorphisms are associated with increased risk for developing cardiovascular diseases, and watermelon appears to have the potential to improve hyperlipidemia due to the presence of nutrients such as arginine and citrulline. OBJECTIVE: To test the hypolipidemic effect of watermelon extract (Citrullus lanatus) and the influence of the methylenetetrahydrofolate reductase genotype (MTHFR C677T) on supplementation response. METHODS: This is an experimental clinical phase II randomized and double-blind study. Forty-three subjects with dyslipidemia were randomly divided into 2 groups: experimental (n = 22) and control (n = 21) groups. The subjects were supplemented daily for 42 days with 6 g of watermelon extract or a mixture of carbohydrates (sucrose/glucose/fructose). RESULTS: The use of watermelon extract reduced plasma total cholesterol (p < 0.05) and low-density lipoprotein (p < 0.01) without modifying triglycerides, high-density lipoprotein, and very low-density lipoprotein values. Only carriers of the T allele (MTHFR C677T) showed decreasing concentrations of low-density lipoprotein (p < 0.01). No changes in anthropometric parameters analyzed were observed. This is the first study to demonstrate the beneficial effect of the consumption of watermelon extract in reducing plasma levels of lipids in humans. The MTHFR C677T polymorphism did not affect the plasma lipid concentration but made individuals more responsive to treatment with watermelon. CONCLUSIONS: The consumption of this functional food represents an alternative therapy in the combined treatment of patients with dyslipidemia, promoting health and minimizing the development of risk factors for cardiovascular diseases.


Subject(s)
Cholesterol, LDL/blood , Cholesterol/blood , Citrullus/chemistry , Dyslipidemias/drug therapy , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Polymorphism, Genetic/genetics , Adult , Double-Blind Method , Dyslipidemias/blood , Dyslipidemias/genetics , Genotype , Humans , Middle Aged , Phytotherapy , Placebos , Plant Extracts/administration & dosage
3.
Can J Microbiol ; 53(1): 100-5, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17496955

ABSTRACT

Herbaspirillum seropedicae is an endophytic bacterium that fixes nitrogen under microaerophilic conditions. The putative promoter sequences glnAp1 (sigma70-dependent) and glnAp2 (sigma54), and two NtrC-binding sites were identified upstream from the glnA, ntrB and ntrC genes of this microorganism. To study their transcriptional regulation, we used lacZ fusions to the H. seropedicae glnA gene, and the glnA-ntrB and ntrB-ntrC intergenic regions. Expression of glnA was up-regulated under low ammonium, but no transcription activity was detected from the intergenic regions under any condition tested, suggesting that glnA, ntrB and ntrC are co-transcribed from the promoters upstream of glnA. Ammonium regulation was lost in the ntrC mutant strain. A point mutation was introduced in the conserved -25/-24 dinucleotide (GG-->TT) of the putative sigma54-dependent promoter (glnAp2). Contrary to the wild-type promoter, glnA expression with the mutant glnAp2 promoter was repressed in the wild-type strain under low ammonium levels, but this repression was abolished in an ntrC background. Together our results indicate that the H. seropedicae glnAntrBC operon is regulated from two functional promoters upstream from glnA, which are oppositely regulated by the NtrC protein.


Subject(s)
Gene Expression Regulation, Bacterial/genetics , Herbaspirillum/genetics , Nitrogen Fixation/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/genetics , Herbaspirillum/metabolism , Nitrogen/metabolism , Operon , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...