Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(3): e0282293, 2023.
Article in English | MEDLINE | ID: mdl-36862730

ABSTRACT

It is widely established that gonadal hormones are fundamental to modulating and organizing the sex-specific nature of reproductive behaviors. Recently we proposed that context fear conditioning (CFC) may emerge in a sex-specific manner organized prior to the pubertal surge of gonadal hormones. Here we sought to determine the necessity of male and female gonadal hormones secreted at critical periods of development upon context fear learning. We tested the organizational hypothesis that neonatal and pubertal gonadal hormones play a permanent role in organizing contextual fear learning. We demonstrate that the postnatal absence of gonadal hormones by neonatal orchiectomy (oRX) in males and ovariectomy (oVX) in females resulted in an attenuation of CFC in adult males and an enhancement of CFC in adult females. In females, the gradual introduction of estrogen before conditioning partially rescued this effect. However, the decrease of CFC in adult males was not rescued by introducing testosterone before conditioning. Next, at a further point in development, preventing the pubertal surge of gonadal hormones by prepubertal oRX in males resulted in a reduction in adult CFC. In contrast, in females, prepubertal oVX did not alter adult CFC. However, the adult introduction of estrogen in prepubertal oVX rats reduced adult CFC. Lastly, the adult-specific deletion of gonadal hormones by adult oRX or oVX alone or replacement of testosterone or estrogen did not alter CFC. Consistent with our hypothesis, we provide initial evidence that gonadal hormones at early periods of development exert a vital role in the organization and development of CFC in male and female rats.


Subject(s)
Gonadal Hormones , Learning , Female , Male , Animals , Rats , Estrogens , Fear , Testosterone
2.
Brain Behav ; 9(8): e01307, 2019 08.
Article in English | MEDLINE | ID: mdl-31268249

ABSTRACT

INTRODUCTION: Lead (Pb) exposure yielding blood lead levels (BLL) as low as 2 µg/dl in children is an international problem. More common in US low-income neighborhoods, childhood Pb exposure can cause behavioral and cognitive deficits, including working memory impairments, which can persist into adulthood. So far, studies characterized short-term effects of high Pb exposure on neuronal structure and function. However, long-term consequences of early chronic Pb exposure on neuronal activity are poorly documented. METHODS: Here, we exposed male and female mice (PND [postnatal day] 0 to PND 28) to one of three Pb treatments: 0 ppm (sodium-treated water, control), 30 ppm (low dose), and 330 ppm (high dose) lead acetate. Once the male and female mice were 9-12 months old, extracellular field recordings on hippocampal slices were performed. RESULTS: We show that at CA3 to CA1 synapses, synaptic transmission was decreased and neuronal fiber activity was increased in males exposed to lowest level Pb. In contrast, both synaptic transmission and neuronal fiber activity were increased in females exposed to high Pb. The ventral hippocampus-medial prefrontal cortex (vHPC-mPFC) synapses are crucial for working memory in rodents. The lowest level Pb decreased vHPC-mPFC synaptic transmission, whereas high Pb decreased short-term synaptic depression. CONCLUSIONS: Overall, we show for the first time that early exposure to either high or lowest level Pb has long-term consequences on different synaptic properties of at least two hippocampal synapses. Such consequences of early Pb exposure might worsen the cognitive decline observed in aging men and women. Our results suggest that additional efforts should focus on the consequences of early Pb exposure especially in at-risk communities.


Subject(s)
Environmental Exposure/adverse effects , Lead/toxicity , Neurons/drug effects , Synapses/drug effects , Synaptic Transmission/drug effects , Age Factors , Animals , Female , Hippocampus/drug effects , Male , Memory, Short-Term/drug effects , Mice , Optogenetics , Time
SELECTION OF CITATIONS
SEARCH DETAIL
...