Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci Health B ; 44(7): 724-9, 2009 Sep.
Article in English | MEDLINE | ID: mdl-20183083

ABSTRACT

A laboratory experiment was carried out to test the efficiency of a bio-mixture made up of pruning residues at two (PR2) and five (PR5) years of composting and wheat straw (STW) in the biological cleaning of water contaminated by different mixtures of fungicides usually employed in vineyards. The experiment was conducted and reproduced at a scale of 1:100 of operating field conditions. Commercial formulates of penconazole (PC), (RS)-1-[2-(2,4-dichlorophenyl)pentyl]-1H-1,2,4-triazole), dimetomorph (DM), (EZ)-4-[3-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)acryloyl]morpholine), azoxystrobin (AZ), (methyl (E)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate), iprovalicarb (IP), (isopropyl 2-methyl-1-[(RS)-1-p-tolylethyl]carbamoyl-(S)-propylcarbamate), metalaxyl (MX), (methyl N-(methoxyacetyl)-N-(2,6-xylyl)-DL-alaninate), fludioxonil (FL), (4-(2,2-difluoro-1,3-benzodioxol-4-yl)-1H-pyrrole-3-carbonitrile) and cyprodinil (CY), (4-cyclopropyl-6-methyl-N-phenylpyrimidin-2-amine) were mixed in water and discharged into the bio-mixture following the time schedule of the treatments carried out in the grapevine in real field conditions. At each treatment, contaminated water with fungicides was circulated repeatedly through the bio-mixture to enhance the sorption of fungicides. In fact, it retained them between 98-100% with the exception of MX of which it was able to retain only 90.5%. The adsorption/desorption experiment showed that repeated circulation of water, instead of enhancing MX retention, can easily remove about 30% of MX already adsorbed by the bio-mixture. This finding suggests that water contaminated by very mobile pesticides should be discharged at the end of field treatments without re-circulating the water in order to avoid the release of pesticides weakly adsorbed on the bio-mixture.


Subject(s)
Fungicides, Industrial/analysis , Pesticide Residues/analysis , Soil/analysis , Water Pollutants, Chemical/analysis , Water Purification , Environmental Monitoring , Soil Pollutants/analysis , Sorption Detoxification , Vitis/chemistry
2.
Chemosphere ; 72(11): 1739-43, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18550145

ABSTRACT

A 180 d laboratory experiment was conducted to investigate the degradation rates of chlorpyrifos (10 and 50 mg kg(-1)) and metalaxyl (100 mg kg(-1)) separately and co-applied in a biomix constituted by topsoil, vine-branches and urban-waste-garden compost. The effect of repeated application of metalaxyl was also investigated. Microbial biomass-C (MBC) content and metabolic quotient (qCO(2)) were measured to evaluate changes in microbial biomass size and activity induced by the presence of the two pesticides. Degradation rate decreased with increasing concentration of chlorpyrifos in all treatments. Metalaxyl half-life was significantly reduced in co-application with chlorpyrifos indicating a synergic interaction between the two pesticides in favour of enhanced degradation rate for metalaxyl but not for chlorpyrifos. Furthermore, repeated application resulted in a sharp reduction of metalaxyl half-life from 37 d after first application to 4 d after third application. MBC content was negatively influenced by the addition of pesticides but it started to recover immediately, in both separate and co-applied treatments, reaching the control value when pesticide residues were about 50% of the initial concentration. The qCO(2) reached a steady-state after about 20 d in separately applied and 40 d in co-applied treatments, indicating a tendency to arrive at a new metabolic equilibrium. In conclusion, the biomix tested has been shown to degrade pesticides relatively fast and to have a microbial community that is varied enough to allow selection of those microorganisms able to degrade metalaxyl and chlorpyrifos.


Subject(s)
Pesticides/chemistry , Alanine/analogs & derivatives , Alanine/chemistry , Alanine/metabolism , Biodegradation, Environmental , Bioreactors/microbiology , Chlorpyrifos/chemistry , Chlorpyrifos/metabolism , Pesticides/metabolism
3.
J Environ Sci Health B ; 41(6): 1019-36, 2006.
Article in English | MEDLINE | ID: mdl-16893786

ABSTRACT

To investigate the effects of moist olive husks (MOH-residues) on soil respiration, microbial biomass, and enzymatic (o-diphenoloxidase, beta-glucosidase, dehydrogenase and alkaline phosphatase) activities, a silty clay soil was incubated with 0 (control), 8 x 10(3) (D), 16 x 10(3) (2D) and 80 x 10(3) (10D) kg ha-1 of MOH-residues on a dry weight basis. Soil respiration and microbial biomass data indicated that the addition of MOH-residues strongly increased microbial activity proportionally to the amounts added. Data of qCO2 suggested that the respiration to biomass ratio of the microbial population was strongly modified by MOH-residues additions during the first 90 days of incubation. The qCO2 data suggested a low efficiency in energy yields from C oxidation during the first 2 months of soil incubation. qFDA seemed to be relatively unaffected for treatments D and 2D as compared to the control, but was significantly lowered by the application of 10D, showing the lowest hydrolytic activity of microbial biomass in this treatment up to 360 days of incubation. o-Diphenoloxidase activity was delayed, and this delay was extended with the addition of larger quantities of MOH-residues. Alkaline phosphatase, beta-glucosidase and dehydrogenase activities were in line with the findings on microbial biomass changes and activities. The biological and biochemical data suggest that the addition of a large quantity of MOH-residues (80 x 10(3) kg ha-1) strongly modifies the soil characteristics affecting the r- and K-strategist populations, and that these changes last for at least the 360 days of incubation. The data also suggest that application rates exceeding 16 x 10(3) kg ha-1 are not recommended until the agro-chemical and -physical functions of the soil are further studied.


Subject(s)
Agriculture/methods , Bacteria/metabolism , Olea/chemistry , Soil Microbiology , Soil/analysis , Bacteria/drug effects , Bacteria/enzymology , Biodegradation, Environmental , Biomass , Dose-Response Relationship, Drug , Population Dynamics , Respiration , Soil/standards , Time Factors , Waste Management
4.
Chemosphere ; 55(6): 823-8, 2004 May.
Article in English | MEDLINE | ID: mdl-15041286

ABSTRACT

A potential method for cleaning water from point-source pollution by organic compounds is using biological reactors. In this study, four reactors were tested for their ability to retain and degrade pesticides. The pesticides tested were the insecticide chlorpyrifos, the fungicide metalaxyl and the herbicide imazamox. The reactors were filled with differing mixtures of vine-branch, citrus peel, urban waste and public green compost. The reactor volume was 188 l. Forced circulation of the contaminated solution was programmed to decontaminate the solution. Both retention and degradation of the compounds by the reactors was studied. Chlorpyrifos was the best retained, due to its physico-chemical characteristics, while only one substrate effectively retained metalaxyl and imazamox (citrus peel+urban waste compost). Degradation of the pesticides in the reactors was faster than published values for degradation in soil. The half-life of all pesticides in the reactors was less than 14 days, compared to literature values of 60-70 days in soil. The combined retention and fast degradation make the biofilter a feasible technique to reduce spill-related and point environmental contamination by pesticides. The technique is most effective against persistent pesticides, while for mobile pesticides, the efficiency can be improved with several passages of the contaminated solution through biofilters.


Subject(s)
Bioreactors , Pesticides/chemistry , Water Pollutants, Chemical , Water Purification , Agriculture/methods , Filtration , Half-Life , Kinetics , Soil , Waste Products
SELECTION OF CITATIONS
SEARCH DETAIL
...