Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 586(7831): 697-701, 2020 10.
Article in English | MEDLINE | ID: mdl-33116289

ABSTRACT

On 12 November 2014, the Philae lander descended towards comet 67P/Churyumov-Gerasimenko, bounced twice off the surface, then arrived under an overhanging cliff in the Abydos region. The landing process provided insights into the properties of a cometary nucleus1-3. Here we report an investigation of the previously undiscovered site of the second touchdown, where Philae spent almost two minutes of its cross-comet journey, producing four distinct surface contacts on two adjoining cometary boulders. It exposed primitive water ice-that is, water ice from the time of the comet's formation 4.5 billion years ago-in their interiors while travelling through a crevice between the boulders. Our multi-instrument observations made 19 months later found that this water ice, mixed with ubiquitous dark organic-rich material, has a local dust/ice mass ratio of [Formula: see text], matching values previously observed in freshly exposed water ice from outbursts4 and water ice in shadow5,6. At the end of the crevice, Philae made a 0.25-metre-deep impression in the boulder ice, providing in situ measurements confirming that primitive ice has a very low compressive strength (less than 12 pascals, softer than freshly fallen light snow) and allowing a key estimation to be made of the porosity (75 ± 7 per cent) of the boulders' icy interiors. Our results provide constraints for cometary landers seeking access to a volatile-rich ice sample.

2.
Phys Med Biol ; 48(17): 2783-96, 2003 Sep 07.
Article in English | MEDLINE | ID: mdl-14516101

ABSTRACT

Total skin electron therapy (TSET) is a complex technique which requires non-standard measurements and dosimetric procedures. This paper investigates an essential first step towards TSET Monte Carlo (MC) verification. The non-standard 6 MeV 40 x 40 cm2 electron beam at a source to surface distance (SSD) of 100 cm as well as its horizontal projection behind a polymethylmethacrylate (PMMA) screen to SSD = 380 cm were evaluated. The EGS4 OMEGA-BEAM code package running on a Linux home made 47 PCs cluster was used for the MC simulations. Percentage depth-dose curves and profiles were calculated and measured experimentally for the 40 x 40 cm2 field at both SSD = 100 cm and patient surface SSD = 380 cm. The output factor (OF) between the reference 40 x 40 cm2 open field and its horizontal projection as TSET beam at SSD = 380 cm was also measured for comparison with MC results. The accuracy of the simulated beam was validated by the good agreement to within 2% between measured relative dose distributions, including the beam characteristic parameters (R50, R80, R100, Rp, E0) and the MC calculated results. The energy spectrum, fluence and angular distribution at different stages of the beam (at SSD = 100 cm, at SSD = 364.2 cm, behind the PMMA beam spoiler screen and at treatment surface SSD = 380 cm) were derived from MC simulations. Results showed a final decrease in mean energy of almost 56% from the exit window to the treatment surface. A broader angular distribution (FWHM of the angular distribution increased from 13 degrees at SSD = 100 cm to more than 30 degrees at the treatment surface) was fully attributable to the PMMA beam spoiler screen. OF calculations and measurements agreed to less than 1%. The effect of changing the electron energy cut-off from 0.7 MeV to 0.521 MeV and air density fluctuations in the bunker which could affect the MC results were shown to have a negligible impact on the beam fluence distributions. Results proved the applicability of using MC as a treatment verification tool for complex radiotherapy techniques.


Subject(s)
Electrons/therapeutic use , Models, Biological , Monte Carlo Method , Mycosis Fungoides/radiotherapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Skin Neoplasms/radiotherapy , Computer Simulation , Humans , Models, Statistical , Phantoms, Imaging , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity
3.
Med Dosim ; 28(1): 1-6, 2003.
Article in English | MEDLINE | ID: mdl-12747611

ABSTRACT

An accurate determination of the penumbra of radiosurgery profiles is critical to avoid complications in organs at risk adjacent to the tumor. Conventional detectors may not be accurate enough for small field sizes. The Monte Carlo (MC) method was used to study the behavior of radiosurgical beam profiles at the penumbral region; the BEAM code was also used in this work. Two collimators (2.2- and 0.3-cm diameter) were calculated and compared with empirical measurements obtained with the detectors normally used. The differences found between film dosimetry and MC revealed a systematic error in the reading procedure. In the process, a water phantom was simulated with a layer of the same composition as that of the film. MC calculations with film differed by a small amount from those obtained with the water phantom alone. In conclusion, MC may be used as a verification tool to support dosimetrical procedures with conventional detectors, especially in very small beams such as those used in radiosurgery. Furthermore, it has been proved that the film energy dependence is negligible for fields used in radiosurgery.


Subject(s)
Brain Neoplasms/surgery , Film Dosimetry , Monte Carlo Method , Radiometry , Radiosurgery , Humans , Models, Theoretical , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...