Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 132(12): 4242-8, 2010 Mar 31.
Article in English | MEDLINE | ID: mdl-20218685

ABSTRACT

Amyloids are pathological fibrillar aggregates of proteins related to over 20 diseases. Amyloid fibers are characterized by the cross-beta motif, which is minimally defined as a series of beta-strands extended perpendicular to the fiber axis, joined by hydrogen bonds parallel to the fiber direction. Several structures, all in agreement with the cross-beta definition, have been proposed for specific amyloids. We study the correlation among the suprastructural chirality, molecular structure, and molecular chirality of amyloids. Here we investigate the suprastructure chirality of different (all-S) serum amyloid A (SAA) truncated peptides. We found that the suprastructure chirality of amyloid fibers from segments SAA(2-6), SAA(1-11) and the majority of those from SAA(2-9) is left-handed, which is consistent with the beta-sheet protofilament model. In contrast, SAA(1-12) and SAA(2-12) as well as SAA(1-12), where the C-terminal aspartic acid was point mutated to either leucine or alanine, form right-handed helical amyloid fibers. Such a suprastructure switch indicates a molecular change in the protofilament structure. This is supported by the behavior observed in the FTIR spectra, where the amide I peak of all of the right-handed fibers is red shifted relative to the left-handed amyloid fibers. This work is a case study where isolated short fragments of SAA containing the same amyloidogenic core sequence fold into different amyloid structures. We show that core sequences, supposed to start the misfolding aggregation of the full-length amyloid peptides, may have structures different from those assumed by the isolated segments.


Subject(s)
Peptides/chemistry , Serum Amyloid A Protein/chemistry , Amino Acid Sequence , Microscopy, Electron, Scanning , Molecular Sequence Data , Mutation , Protein Conformation , Serum Amyloid A Protein/genetics , Spectroscopy, Fourier Transform Infrared
3.
J Am Chem Soc ; 130(14): 4602-3, 2008 Apr 09.
Article in English | MEDLINE | ID: mdl-18338897

ABSTRACT

Amyloids are pathological fibrillar aggregates of proteins related to more than 20 different diseases. Amyloid fibers have a characteristic cross-beta structure consisting of a series of beta-strands extended perpendicular to the fiber axis and joined by hydrogen bonds parallel to the fiber direction. Fibril aggregation results in helical suprastructures. Here we used high-resolution SEM and cryo-SEM for the study of chirality in the amyloid suprastructure. We found that amyloids of Abeta1-40 and hen lysozyme form at all hierarchical levels always and only left-handed helices. In contrast, amyloid fibers formed by the N-terminal sequence of serum amyloid A (SAA1-12) consist of right-handed helices exclusively. Consistently, the peptide enantiomer, formed of (R)-aminoacids, aggregates exclusively in left-handed helices. We conclude that the opposite handedness of the SAA1-12 amyloids is an intrinsic feature of the peptide structure. The left-handed chirality observed for the Abeta1-40 and hen lysozyme amyloid suprastructures is consistent with the conventional beta-sheet structural model. In contrast, the right-handedness observed in (all-S) SAA1-12 fibers indicates that the cross-beta structure of SAA1-12 fibers is probably not formed of beta-sheets. Whatever the answer to the dilemma of the right-handed helicity of SAA1-12 amyloid fibers is, its existence shows that the supramolecular chirality of amyloid fibers is not only dictated by the molecular chirality of the component molecules but also by their structural organization.


Subject(s)
Amyloid beta-Peptides/chemistry , Muramidase/chemistry , Peptide Fragments/chemistry , Serum Amyloid A Protein/chemistry , Animals , Humans , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...