Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Cells ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38727280

ABSTRACT

Regenerative medicine harnesses stem cells' capacity to restore damaged tissues and organs. In vitro methods employing specific bioactive molecules, such as growth factors, bio-inductive scaffolds, 3D cultures, co-cultures, and mechanical stimuli, steer stem cells toward the desired differentiation pathways, mimicking their natural development. Chondrogenesis presents a challenge for regenerative medicine. This intricate process involves precise modulation of chondro-related transcription factors and pathways, critical for generating cartilage. Cartilage damage disrupts this process, impeding proper tissue healing due to its unique mechanical and anatomical characteristics. Consequently, the resultant tissue often forms fibrocartilage, which lacks adequate mechanical properties, posing a significant hurdle for effective regeneration. This review comprehensively explores studies showcasing the potential of amniotic mesenchymal stem cells (AMSCs) and amniotic epithelial cells (AECs) in chondrogenic differentiation. These cells exhibit innate characteristics that position them as promising candidates for regenerative medicine. Their capacity to differentiate toward chondrocytes offers a pathway for developing effective regenerative protocols. Understanding and leveraging the innate properties of AMSCs and AECs hold promise in addressing the challenges associated with cartilage repair, potentially offering superior outcomes in tissue regeneration.


Subject(s)
Amnion , Cell Differentiation , Chondrogenesis , Humans , Amnion/cytology , Animals , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Chondrocytes/cytology , Chondrocytes/metabolism , Regenerative Medicine/methods , Tissue Engineering/methods
2.
Sci Total Environ ; 912: 168925, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38040379

ABSTRACT

Parabens are preservatives found in cosmetics, processed foods, and medications. The harmful repercussions on the central nervous system by one of the most common parabens, propylparaben (PrP), are yet unknown, especially during development. In this study, the neurodevelopmental effects of PrP and long-term neurotoxicity were investigated in the zebrafish model, using an integrated approach. Zebrafish embryos were exposed to two different concentrations of PrP (10 and 1000 µg/L), then larvae were examined for their behavioral phenotypes (open-field behavior, startle response, and circadian rhythmicity) and relevant brain markers (cyp19a1b, pax6a, shank3a, and gad1b). Long-term behavioral and cognitive impacts on sociability, cerebral functional asymmetry and thigmotaxis were also examined on juveniles at 30 dpf and 60 dpf. Moreover, proteomics and gene expression analysis were assessed in brains of 60 dpf zebrafish. Interestingly, thigmotaxis was decreased by the high dose in larvae and increased by the low dose in juveniles. The expression of shank3a and gad1b genes was repressed by both PrP concentrations pointing to possible effects of PrP on neurodevelopment and synaptogenesis. Proteomics analysis evidenced alterations related to brain development and lipid metabolism. Overall, the results demonstrated that early-life exposure to PrP promotes developmental and persistent neurobehavioral alterations in the zebrafish model, affecting genes and protein levels possibly associated with brain diseases.


Subject(s)
Parabens , Zebrafish , Animals , Parabens/toxicity , Parabens/metabolism , Larva , Preservatives, Pharmaceutical
3.
Sci Total Environ ; 903: 166717, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37657536

ABSTRACT

Many chemicals spilled in aquatic ecosystems can interfere with cognitive abilities and brain functions that control fitness-related behaviour. Hence, their harmful potential may be substantially underestimated. Triclocarban (TCC), one of the most common aquatic contaminants, is known to disrupt hormonal activity, but the consequences of this action on behaviour and its underlying cognitive mechanisms are unclear. We tried to fill this knowledge gap by analysing behaviour, cognitive abilities, and brain gene expression in zebrafish larvae exposed to TCC sublethal concentrations. TCC exposure substantially decreased exploratory behaviour and response to stimulation, while it increased sociability. Additionally, TCC reduced the cognitive performance of zebrafish in a habituation learning task. In the brain of TCC-exposed zebrafish, we found upregulation of c-fos, a gene involved in neural activity, and downregulation of bdnf, a gene that influences behavioural and cognitive traits such as activity, learning, and memory. Overall, our experiments highlight consistent effects of non-lethal TCC concentrations on behaviour, cognitive abilities, and brain functioning in a teleost fish, suggesting critical fitness consequences of these compounds in aquatic ecosystems as well as the potential to affect human health.

4.
Chemosphere ; 342: 140167, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37717917

ABSTRACT

Among emerging layered materials, 2D transition metal dichalcogenides (TMDs) nanosheets (n-sheets) have received increasing attention for optoelectronics, energy storage, and, recently, for bioremediation and advanced biomedical applications; however, a lack of ecotoxicological in vivo studies is evident. Herein, for the first time, the potential nanotoxicity of liquid phase exfoliated Group VI TMDs n-sheets (MoS2, WS2, WSe2, and MoSe2) was comparatively investigated using zebrafish embryos (Z-EBs) as an in-vivo model. The 2D n-sheets were produced directly in aqueous-medium, the obtained n-sheets were characterized by scanning electron microscopy, Raman and visible spectroscopy, and their potential nanotoxicity was investigated by fish embryo test OECD TG 236. Chorionated and dechorionated embryos were used to assess the severity of TMD exposure. The survival rate, sublethal alteration during embryogenesis, hatching rate, and mortality were evaluated. TMDs n-sheets tend to adhere to the Z-EBs surface depending on their chemistry. Despite this, TMDs did not show lethal effects; weak sublethal effects were found for MoS2 and WSe2, while slight hatching delays were registered for MoSe2 and WSe2. The observed effects are attributable to the TMDs' tendency to interact with Z-EBs, because of the different chemistry. This work demonstrates how water-dispersed TMDs are potential eco/biocompatible materials.


Subject(s)
Molybdenum , Zebrafish , Animals , Molybdenum/toxicity , Biocompatible Materials , Ecotoxicology , Metals
5.
Antibiotics (Basel) ; 12(4)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37107085

ABSTRACT

Antimicrobial resistance (AMR) is one of the world's industrialized nations' biggest issues. It has a significant influence on the ecosystem and negatively affects human health. The overuse of antibiotics in the healthcare and agri-food industries has historically been defined as a leading factor, although the use of antimicrobial-containing personal care products plays a significant role in the spread of AMR. Lotions, creams, shampoos, soaps, shower gels, toothpaste, fragrances, and other items are used for everyday grooming and hygiene. However, in addition to the primary ingredients, additives are included to help preserve the product by lowering its microbial load and provide disinfection properties. These same substances are released into the environment, escaping traditional wastewater treatment methods and remaining in ecosystems where they contact microbial communities and promote the spread of resistance. The study of antimicrobial compounds, which are often solely researched from a toxicological point of view, must be resumed considering the recent discoveries, to highlight their contribution to AMR. Parabens, triclocarban, and triclosan are among the most worrying chemicals. To investigate this issue, more effective models must be chosen. Among them, zebrafish is a crucial study system because it allows for the assessment of both the risks associated with exposure to these substances as well as environmental monitoring. Furthermore, artificial intelligence-based computer systems are useful in simplifying the handling of antibiotic resistance data and speeding up drug discovery processes.

6.
Chemosphere ; 324: 138348, 2023 May.
Article in English | MEDLINE | ID: mdl-36898440

ABSTRACT

Triclocarban (TCC), is an antimicrobial component in personal care products and it is one of the emerging contaminants since it has been detected in various environmental matrices. Its presence in human cord blood, breast milk, and maternal urine raised issues about its possible impact on development and increased concerns about the safety of daily exposure. This study aims to provide additional information about the effects of zebrafish early-life exposure to TCC on eye development and visual function. Zebrafish embryos were exposed to two concentrations of TCC (5 and 50 µg/L) for 4 days. TCC-mediated toxicity was assessed in larvae at the end of exposure and in the long term (20 days post fertilization; dpf), through different biological end-points. The experiments showed that TCC exposure influences the retinal architecture. In 4 dpf treated larvae, we found a less organized ciliary marginal zone, a decrease in the inner nuclear and inner plexiform layers, and a decrease in the retinal ganglion cell layer. Photoreceptor and inner plexiform layers showed an increase in 20 dpf larvae at lower and both concentrations, respectively. The expression levels of two genes involved in eye development (mitfb and pax6a) were both decreased at the concentration of 5 µg/L in 4 dpf larvae, and an increase in mitfb was observed in 5 µg/L-exposed 20 dpf larvae. Interestingly, 20 dpf larvae failed to discriminate between visual stimuli, demonstrating notable visual perception impairments due to compound. The results prompt us to hypothesize that early-life exposure to TCC may have severe and potentially long-term effect on zebrafish visual function.


Subject(s)
Carbanilides , Zebrafish , Animals , Female , Humans , Zebrafish/metabolism , Larva , Retina , Carbanilides/metabolism
8.
Birth Defects Res ; 115(6): 658-667, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36786327

ABSTRACT

Valproic acid (VPA) is an anti-epileptic drug used alone or in combination with other medications to treat seizures, mania, and bipolar disorder. VPA recognized as a teratogenic chemical can cause severe birth defects mainly affecting the brain and spinal cord when administered during pregnancy. However, the potential mechanisms of developmental toxicity are still less studied, and in the present study, the influence of VPA exposure was evaluated on zebrafish early-life stages. Zebrafish were exposed to two sublethal concentrations of sodium valproate (SV) (0.06 mM and 0.15 mM) from 24 hours post-fertilization (hpf) to 96 hpf and the SV teratogenic potential was investigated through morphometric analysis of zebrafish larvae combined with the evaluation of cartilage profile. Moreover, the effect of SV on the transcription level of pparg was also performed. The results of the study showed the teratogenic potential of SV, which disrupts the morphometric signature of the head and body. The marked distortion of cartilage structures was paralleled to a malformation of telencephalon and optic tectum in both concentrations suggesting a high teratogen effect of SV on the brain. These data were further confirmed by the increased expression of pparg in the zebrafish head. Overall, the present study confirms the teratogenic activity of SV in the zebrafish model and, for the first time, points out the potential protective role of pparg in the SV dose-dependent toxicity.


Subject(s)
Teratogenesis , Valproic Acid , Animals , PPAR gamma/metabolism , Teratogens/toxicity , Teratogens/metabolism , Valproic Acid/toxicity , Valproic Acid/metabolism , Zebrafish/metabolism , Zebrafish Proteins
9.
Food Chem Toxicol ; 165: 113166, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35609738

ABSTRACT

INTRODUCTION: Oxysterols are cholesterol oxidation products and bioactive lipids involved in developmental signalling pathways, embryonic and postembryonic tissue patterning and homeostasis. The embryonic period is a very sensitive window of exposure to bisphenol A (BPA), hence the role of BPA on the levels of oxysterols in the very early stages of zebrafish embryogenesis is a relevant novel field of investigation. OBJECTIVES: To compare the role of BPA on oxysterols levels in zebrafish embryos at 8 and 24 h post fertilization (hpf) with cytochromes P450 (CYPs)-modulating chemicals (carbamazepine, ketoconazole, and hydrogen peroxide). METHODS: Upon a dose range finding, zebrafish embryos were exposed to environmentally relevant (0.04 µM) and toxicological (17.5 µM) BPA concentrations. Seven oxysterols were profiled by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). RESULTS: Similarly to the CYPs-modulating chemicals, BPA caused: i) no significant changes at 8 hpf and ii) a dose-dependent increase of total oxysterols at 24 hpf, with 27-hydroxycholesterol as the most regulated oxysterol. DISCUSSION: In the first day post-fertilization of the zebrafish embryos, the role of BPA alike a CYPs-modulating chemical was confirmed by the similar oxysterol changes observed with the already known CYPs-modulating chemicals.


Subject(s)
Oxysterols , Water Pollutants, Chemical , Animals , Benzhydryl Compounds/metabolism , Benzhydryl Compounds/toxicity , Embryo, Nonmammalian/metabolism , Oxysterols/metabolism , Phenols , Tandem Mass Spectrometry , Water Pollutants, Chemical/metabolism , Zebrafish/metabolism
10.
Article in English | MEDLINE | ID: mdl-35457321

ABSTRACT

Humans are exposed to residues of organophosphate and neonicotinoid pesticides, commonly used in agriculture. Children are particularly vulnerable and, among possible adverse outcomes, the increased incidence of premature mammary gland development (thelarche) has raised concern. We evaluated the toxicological effects of chlorpyrifos (CPF), imidacloprid (IMI) and glyphosate (GLY) at exposure concentrations occurring in children on the tumorigenic MCF-7 and non-tumorigenic MCF-12A breast cell lines, as representative of the target organ model, assessing cytotoxicity, apoptosis, necrosis, intracellular reactive oxygen species (ROS) and ATP levels, 17ß-estradiol secretion and gene expression of nuclear receptors involved in mammary gland development. The pesticides decreased cell vitality in MCF-7 and cell proliferation in MCF-12A cells. ATP levels were decreased in MCF-7 cells by pesticides and apoptosis was increased in MCF-12A cells only by GLY (2.3 nM). ROS production was decreased by pesticides in both cell lines, except IMI (1.6 nM) in MCF-7 cells. Endocrine disrupting activity was highlighted by induction of 17ß-estradiol secretion and modulation of the gene expression of estrogen alpha and beta, progesterone, androgen, and aryl hydrocarbon receptors in both cell lines. The use of MCF-7 and MCF-12A cells highlighted dissimilar modes of action of each pesticide at low human relevant concentrations.


Subject(s)
Breast Neoplasms , Pesticides , Adenosine Triphosphate , Child , Estradiol , Female , Humans , MCF-7 Cells , Pesticides/toxicity , Reactive Oxygen Species
11.
Sci Total Environ ; 828: 154414, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35278537

ABSTRACT

Pendimethalin (PND) is a dinitroaniline preemergent herbicide widely used to control grasses and weeds. The present study aimed to evaluate the PND potential effects on the development of zebrafish early-life stages. The research focuses first on acute toxicity, followed by the integration of toxicity results through histopathology, oxidative status, and neurotoxicity evaluation of sublethal and environmentally relevant concentrations. Zebrafish larvae exposed to PND showed mortality and developed sublethal alterations including impaired fin development, lordosis, scoliosis, blood congestion, impaired blood flow, and reduced heartbeat. PND exposure (0.5 mg/L) affects musculoskeletal development leading to delayed and reduced ossification of the vertebral centra in the developing vertebral column and disruption of muscle morphology. Herbicide exposure (0.5 mg/L and 0.05 mg/L) led also to biochemical changes of antioxidant enzymes, increasing the activity of CAT, GR, and GPx, while no effects were observed on the activity of SOD and GST in zebrafish larvae. Lastly, AChE activity, a biochemical marker of neurotoxicity, was also increased in zebrafish larvae exposed to 0.5 mg/L of PND. These results confirm the developmental toxicity of PND in zebrafish early-life stages, pointing out the potential role of oxidative stress in the onset of sublethal alterations.


Subject(s)
Herbicides , Water Pollutants, Chemical , Aniline Compounds/toxicity , Animals , Embryo, Nonmammalian , Herbicides/metabolism , Larva , Oxidative Stress , Water Pollutants, Chemical/metabolism , Zebrafish/physiology
12.
Article in English | MEDLINE | ID: mdl-35162288

ABSTRACT

Oxysterols have long been considered as simple by-products of cholesterol metabolism, but they are now fully designed as bioactive lipids that exert their multiple effects through their binding to several receptors, representing endogenous mediators potentially involved in several metabolic diseases. There is also a growing concern that metabolic disorders may be linked with exposure to endocrine-disrupting chemicals (EDCs). To date, there are no studies aimed to link EDCs exposure to oxysterols perturbation-neither in vivo nor in vitro studies. The present research aimed to evaluate the differences in oxysterols levels following exposure to two metabolism disrupting chemicals (propylparaben (PP) and triclocarban (TCC)) in the zebrafish model using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Following exposure to PP and TCC, there were no significant changes in total and individual oxysterols compared with the control group; however, some interesting differences were noticed: 24-OH was detected only in treated zebrafish embryos, as well as the concentrations of 27-OH, which followed a different distribution, with an increase in TCC treated embryos and a reduction in zebrafish embryos exposed to PP at 24 h post-fertilization (hpf). The results of the present study prompt the hypothesis that EDCs can modulate the oxysterol profile in the zebrafish model and that these variations could be potentially involved in the toxicity mechanism of these emerging contaminants.


Subject(s)
Oxysterols , Water Pollutants, Chemical , Animals , Carbanilides , Chromatography, Liquid , Embryo, Nonmammalian , Oxysterols/metabolism , Oxysterols/pharmacology , Parabens , Tandem Mass Spectrometry , Water Pollutants, Chemical/toxicity , Zebrafish/metabolism
13.
Birth Defects Res ; 114(5-6): 175-183, 2022 03.
Article in English | MEDLINE | ID: mdl-35064650

ABSTRACT

OBJECTIVES: The present study aimed to investigate the acute toxicity and the developmental alterations induced by triclosan (TCS) exposure in zebrafish early-life stages using fish embryo acute toxicity tests as a methodological approach. MATERIAL AND METHODS: Zebrafish embryos were exposed to five concentrations of TCS and the four lethal alterations were daily recorded to determine the toxicological endpoints of acute toxicity. Furthermore, sublethal alterations were recorded to assess the effect of exposure concentrations on zebrafish embryo's development. RESULTS: The TCS toxicity was determined at 96 h of exposure as lethal concentration 10, lethal concentration 20, lethal concentration 50, lowest observed effects concentration, and no observed effects concentration, reported the following values: 168, 197.2, 267.8, 300, and 200 µg/L. Exposed larvae showed a delay in hatching rate and developed sublethal alterations including reduced blood flow, pericardial oedemata, reduced heartbeat, blood congestion, and craniofacial malformations. The number of zebrafish larvae developing cardiovascular alterations changed according to the tested concentrations and time of evaluation. CONCLUSION: The data confirmed the developmental toxicity of TCS on aquatic organisms and the sublethal alterations developed by zebrafish larvae, indicated its cardiotoxicity and neurotoxicity. Moreover, the developmental toxicity was strongly influenced by the concentration tested and the number of survived zebrafish developing this alteration varying according to the time of exposure.


Subject(s)
Triclosan , Water Pollutants, Chemical , Animals , Larva , Triclosan/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish
14.
Aquat Toxicol ; 236: 105842, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33964520

ABSTRACT

Human activity is responsible for producing several chemical compounds, which contaminate the aquatic environment and adversely influence the survival of aquatic species and indirectly human health. Triclocarban (TCC) belongs to the category of emerging pollutants and its presence in aquatic environment is justified by its wide use as antimicrobial agent in personal care products. The concern about this chemical is due to the risk of persistence in water and soils and bioaccumulation, which contributes to human exposition through the contaminated food consumption. The present study evaluated the developmental toxicity of TCC in zebrafish early-life stages starting with the assessment of acute toxicity and then focusing on the integrative analyses of the observed phenotype on zebrafish development. For this purpose, lethal and sublethal alterations of zebrafish embryos were investigated by the Fish Embryo Acute Toxicity Tests (FET tests). Subsequently, two concentrations of TCC were used to investigate the morphometric features and defects in larvae developmental pigmentation: an environmentally relevant (5µg/L) and toxicological (50µg/L), derived from the No Observed Effect Concentration (NOEC) value concentration. Furthermore, the expression levels of a key transcription factor for melanocyte differentiation and melanin syntheses, such as mitfa (microphthalmia-associated transcription factor) and tyr (tyrosinase) and its activity, were evaluated.


Subject(s)
Carbanilides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Anti-Infective Agents , Embryo, Nonmammalian/drug effects , Environmental Pollutants/pharmacology , Humans , Larva/drug effects , Melanocytes/drug effects , Phenotype , Zebrafish
15.
J Appl Toxicol ; 41(11): 1852-1862, 2021 11.
Article in English | MEDLINE | ID: mdl-33826164

ABSTRACT

Parabens are classified as endocrine disrupting chemicals due to their ability to activate several nuclear receptors causing changes in hormones-dependent signalling pathways. Central nervous system of developing organisms is particularly vulnerable to changes in hormonal pathways, which could lead to altered brain function, abnormal behaviour and even diseases later in life. The aim of the present study was to investigate the effects of exposure to butylparaben (BuP), ethylparaben (EtP) and methylparaben (MeP) during early development on nervous system using zebrafish larvae's behavioural models. Zebrafish were exposed until 4 days post fertilization (dpf) to three concentrations of each paraben chosen considering the environmentally realistic concentrations of human exposure and the benchmark-dose lower bound calculated for zebrafish larvae (BuP: 5, 50 and 500 µg/L; EtP: 50, 500 and 5000 µg/L; MeP: 100, 1000 and 10,000 µg/L). Activity in novel and in familiar environment, thigmotaxis, visual startle response and photic synchronization of the behavioural circadian rhythms were analysed at 4, 5 and 6 dpf. Zebrafish larvae exposed to BuP 500 µg/L and EtP 5000 µg/L revealed increased anxiety-like behaviour in novel environment. Larvae treated with 500 µg/L of BuP showed reduced activity in familiar and marginally in unfamiliar environment, and larvae exposed to 5000 µg/L of EtP exhibited hyperactivity in familiar environment. Parabens exposure did not influence the visual startle response and the photic synchronization of circadian rhythms in zebrafish larvae. This research highlighted as the exposure to parabens has the potential to interfere with behavioural development of zebrafish.


Subject(s)
Endocrine Disruptors/toxicity , Parabens/toxicity , Zebrafish , Animals , Larva/drug effects , Larva/growth & development , Zebrafish/growth & development
16.
Article in English | MEDLINE | ID: mdl-33925709

ABSTRACT

The reasons behind the extensive use of pesticides include the need to destroy vector organisms and promote agricultural production in order to sustain population growth. Exposure to pesticides is principally occupational, even if their persistence in soil, surface water and food brings the risk closer to the general population, hence the demand for risk assessment, since these compounds exist not only as individual chemicals but also in form of mixtures. In light of this, zebrafish represents a suitable model for the evaluation of toxicological effects. Here, zebrafish embryos were exposed for 96 h post fertilization (hpf) to sublethal concentrations (350 µg/L) of linuron and propamocarb, used separately and then combined in a single solution. We investigated the effects on morphological traits and the expression of genes known to be implicated in synaptogenesis (neurexin1a and neuroligin3b). We observed alterations in some phenotypic parameters, such as head width and interocular distance, that showed a significant reduction (p < 0.05) for the mixture treatment. After individual exposure, the analysis of gene expression showed an imbalance at the synaptic level, which was partially recovered by the simultaneous administration of linuron and propamocarb. This preliminary study demonstrates that the combined substances were responsible for some unpredictable effects, diverging from the effect observed after single exposure. Thus, it is clear that risk assessment should be performed not only on single pesticides but also on their mixtures, the toxicological dynamics of which can be totally unpredictable.


Subject(s)
Pesticides , Water Pollutants, Chemical , Animals , Carbamates , Humans , Linuron/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish
17.
Bull Environ Contam Toxicol ; 105(2): 218-223, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32591851

ABSTRACT

The adverse effects of endocrine disruptors (EDs) on aquatic wildlife and human health represent a current issue of high public concern. Substantial knowledge of the level of estrogenic EDs in fish has accumulated from field surveys. For this purpose, a survey of wild brown trout (Salmo trutta trutta) was carried out to assess the incidence of EDs in the feral fish population living in the Liri river (Abruzzi, Italy). The results of this study show that this aquatic environment possesses an estrogenic potency that triggered the increase of vitellogenin levels in both female and male trouts. Fish exposed to different pesticides and urban waste in downstream river showed higher vitellogenin levels in comparison to the headwater site. Furthermore, some trouts coming from the downstream reported the presence of several pesticides and fungicides, some of these banned several years ago.


Subject(s)
Biological Monitoring/methods , Endocrine Disruptors/toxicity , Rivers/chemistry , Trout/metabolism , Vitellogenins/metabolism , Water Pollutants, Chemical/toxicity , Animals , Endocrine Disruptors/analysis , Female , Italy , Male , Water Pollutants, Chemical/analysis
18.
Int J Mol Sci ; 21(9)2020 May 06.
Article in English | MEDLINE | ID: mdl-32384657

ABSTRACT

Several pesticides are recognized as endocrine-disrupting chemicals (EDCs) since they can interfere with the dysregulation of sexual, thyroid and neuro-endocrine hormones. Children are particularly vulnerable to the adverse effects of EDCs due to their developmental stage, peculiar lifestyle and dietary habits. In this context, the exposure to pesticides represents an important risk factor associated with early development. This study deals with the possible association between exposure to pesticides and idiopathic premature thelarche in girls from areas of intensive agriculture practice in the Centre of Italy. An integrated approach was set up, including: (i) a case-control study on girls with idiopathic premature thelarche; (ii) the evaluation of multiple pesticides exposure in girls; (iii) the evaluation of multiple pesticides in food; (iv) the dietary intake of pesticide residues; (v) the assessment of toxicological effects of widely used pesticides by in vitro model. Data integration will provide an estimate of the predictive risk of potential effects on girls' health, linked to dietary intake.


Subject(s)
Dietary Exposure/statistics & numerical data , Endocrine Disruptors/toxicity , Pesticides/toxicity , Puberty, Precocious/epidemiology , Child , Female , Humans
19.
FEMS Microbiol Lett ; 367(3)2020 02 01.
Article in English | MEDLINE | ID: mdl-32124914

ABSTRACT

Nowadays, the interest in the role of dietary components able to influence the composition and the activity of the intestinal microbiota and, consequently, to modulate the risk of genotoxicity and colon cancer is increasing in the scientific community. Within this topic, the microbial ability to have a protective role at gastrointestinal level by counteracting the biological activity of genotoxic compounds, and thus preventing the DNA damage, is deemed important in reducing gut pathologies and is considered a new tool for probiotics and functional foods. A variety of genotoxic compounds can be found in the gut and, besides food-related mutagens and other DNA-reacting compounds, there is a group of pollutants commonly used in food packaging and/or in thousands of everyday products called endocrine disruptors (EDs). EDs are exogenous substances that alter the functions of the endocrine system through estrogenic and anti-estrogenic activity, which interfere with normal hormonal function in human and wildlife. Thus, this paper summarizes the main applications of probiotics, mainly lactobacilli, as a bio-protective tool to counteract genotoxic and mutagenic agents, by biologically inhibiting the related DNA damage in the gut and highlights the emerging perspectives to enlarge and further investigate the microbial bio-protective role at intestinal level.


Subject(s)
Endocrine Disruptors/metabolism , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/chemistry , Gastrointestinal Tract/microbiology , Probiotics/metabolism , Humans , Lactobacillus/metabolism , Mutagens/metabolism
20.
J Appl Toxicol ; 40(4): 493-503, 2020 04.
Article in English | MEDLINE | ID: mdl-31889330

ABSTRACT

Parabens are widely used in cosmetics, toiletries, food and pharmaceuticals. Toxicological effects of parabens on human lipid metabolism are not well established. The present study used the early-life stages of zebrafish (Danio rerio) to determine the toxicity of propylparaben (PP). The embryos were exposed for 96 hours postfertilization (hpf) at five different concentrations of PP, and lethal and sublethal alterations were recorded daily. The lethal concentration 50 (LC50 ) value was 3.98 mg/L. The most common sublethal alterations recorded at 1 and 2 mg/L were an enlarged and misshaped yolk sac, hyperexcitability, and reduction in head size and swim bladder. At sublethal concentrations of 1 and 2 mg/L, we observed an altered lipid metabolism, in terms of decrease in neutral lipid mobilization from yolk and alteration of phospholipid metabolism, both in the body and in the yolk sac. These observations were combined with strong head cartilage defects, indicating a strong effect of PP on head development. This research demonstrates that PP interferes with lipid utilization in zebrafish during early-life stages that might be involved in neurological and skeletal abnormalities.


Subject(s)
Embryo, Nonmammalian/drug effects , Lipid Metabolism/drug effects , Parabens/toxicity , Zebrafish/embryology , Animals , Dose-Response Relationship, Drug , Embryo, Nonmammalian/metabolism , Embryonic Development/drug effects , Lethal Dose 50 , Risk Assessment , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...