Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biochim Pol ; 60(4): 647-55, 2013.
Article in English | MEDLINE | ID: mdl-24432313

ABSTRACT

Microarray technology changed the landscape of contemporary life sciences by providing vast amounts of expression data. Researchers are building up repositories of experiment results with various conditions and samples which serve the scientific community as a precious resource. Ensuring that the sample is of high quality is of utmost importance to this effort. The task is complicated by the fact that in many cases datasets lack information concerning pre-experimental quality assessment. Transcription profiling of tissue samples may be invalidated by an error caused by heterogeneity of the material. The risk of tissue cross contamination is especially high in oncological studies, where it is often difficult to extract the sample. Therefore, there is a need of developing a method detecting tissue contamination in a post-experimental phase. We propose Microarray Inspector: customizable, user-friendly software that enables easy detection of samples containing mixed tissue types. The advantage of the tool is that it uses raw expression data files and analyses each array independently. In addition, the system allows the user to adjust the criteria of the analysis to conform to individual needs and research requirements. The final output of the program contains comfortable to read reports about tissue contamination assessment with detailed information about the test parameters and results. Microarray Inspector provides a list of contaminant biomarkers needed in the analysis of adipose tissue contamination. Using real data (datasets from public repositories) and our tool, we confirmed high specificity of the software in detecting contamination. The results indicated the presence of adipose tissue admixture in a range from approximately 4% to 13% in several tested surgical samples.


Subject(s)
Oligonucleotide Array Sequence Analysis/statistics & numerical data , Software , Transcriptome , Computational Biology/methods , Databases, Genetic , Humans , Oligonucleotide Array Sequence Analysis/methods , Tissue Distribution
2.
Chemphyschem ; 9(2): 282-92, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18189251

ABSTRACT

Extensive time-dependent DFT (TDDFT) and DFT/multireference configuration interaction (MRCI) calculations are performed on the singlet and triplet excited states of free-base porphyrin, with emphasis on intersystem crossing processes. The equilibrium geometries, as well as the vertical and adiabatic excitation energies of the lowest singlet and triplet excited states are determined. Single and double proton-transfer reactions in the first excited singlet state are explored. Harmonic vibrational frequencies are calculated at the equilibrium geometries of the ground state and of the lowest singlet and triplet excited states. Furthermore, spin-orbit coupling matrix elements of the lowest singlet and triplet states and their numerical derivatives with respect to nuclear displacements are computed. It is shown that opening of an unprotonated pyrrole ring as well as excited-state single and double proton transfer inside the porphyrin cavity lead to crossings of the potential energy curves of the lowest singlet and triplet excited states. It is also found that displacements along out-of-plane normal modes of the first excited singlet state cause a significant increase of the , , and spin-orbit coupling matrix elements. These phenomena lead to efficient radiationless deactivation of the lowest excited states of free-base porphyrin via intercombination conversion. In particular, the S1-->T1 population transfer is found to proceed at a rate of approximately 10(7) s(-1) in the isolated molecule.


Subject(s)
Computer Simulation , Models, Chemical , Porphyrins/chemistry , Quantum Theory , Models, Molecular , Molecular Structure , Time Factors
3.
J Phys Chem A ; 110(49): 13238-44, 2006 Dec 14.
Article in English | MEDLINE | ID: mdl-17149840

ABSTRACT

The mechanisms which are responsible for the radiationless deactivation of the npi* and pipi* excited singlet states of thymine have been investigated with multireference ab initio methods (the complete-active-space self-consistent-field (CASSCF) method and second-order perturbation theory with respect to the CASSCF reference (CASPT2)) as well as with the CC2 (approximated singles and doubles coupled-cluster) method. The vertical excitation energies, the equilibrium geometries of the 1npi*and 1pipi* states, as well as their adiabatic excitation energies have been determined. Three conical intersections of the S1 and S0 energy surfaces have been located. The energy profiles of the excited states and the ground state have been calculated with the CASSCF method along straight-line reaction paths leading from the ground-state equilibrium geometry to the conical intersections. All three conical intersections are characterized by strongly out-of-plane distorted geometries. The lowest-energy conical intersection (CI1) arises from a crossing of the lowest 1pipi* state with the electronic ground state. It is found to be accessible in a barrierless manner from the minimum of the 1pipi* state, providing a direct and fast pathway for the quenching of the population of the lowest optically allowed excited states of thymine. This result explains the complete diffuseness of the absorption spectrum of thymine in supersonic jets. The lowest vibronic levels of the optically nearly dark 1npi* state are predicted to lie below CI1, explaining the experimental observation of a long-lived population of dark excited states in gas-phase thymine.


Subject(s)
Computer Simulation , Models, Chemical , Quantum Theory , Thymine/chemistry , Models, Molecular , Molecular Conformation
4.
J Phys Chem A ; 110(29): 9031-8, 2006 Jul 27.
Article in English | MEDLINE | ID: mdl-16854013

ABSTRACT

Exploratory electronic structure calculations have been performed with the CC2 (simplified singles and doubles coupled-cluster) method for two conformers of the adenine (A)-thymine (T) base pair, with emphasis on excited-state proton-transfer reactions. The Watson-Crick conformer and the most stable (in the gas-phase) conformer of the A-T base pair have been considered. The equilibrium geometries of the ground state and of the lowest excited electronic states have been determined with the MP2 (second-order Møller-Plesset) and CC2 methods, respectively. Vertical and adiabatic excitation energies, oscillator strengths, and dipole moments of the excited states are reported. Of particular relevance for the photochemistry of the A-T base pair are optically dark (1)pipi* states of charge-transfer character. Although rather high in energy at the ground-state equilibrium geometry, these states are substantially lowered in energy by the transfer of a proton, which thus neutralizes the charge separation. A remarkable difference of the energetics of the proton-transfer reaction is predicted for the two tautomers of A-T: in the Watson-Crick conformer, but not in the most stable conformer, a sequence of conical intersections connects the UV-absorbing (1)pipi* state in a barrierless manner with the electronic ground state. These conical intersections allow a very fast deactivation of the potentially reactive excited states in the Watson-Crick conformer. The results provide evidence that the specific hydrogen-bonding pattern of the Watson-Crick conformer endows this structure with a greatly enhanced photostability. This property of the Watson-Crick conformer of A-T may have been essential for the selection of this species as carrier of genetic information in early stages of the biological evolution.


Subject(s)
Adenine/chemistry , Base Pairing , Electrons , Protons , Thymine/chemistry , Models, Molecular , Photochemistry
5.
J Am Chem Soc ; 127(17): 6257-65, 2005 May 04.
Article in English | MEDLINE | ID: mdl-15853331

ABSTRACT

The mechanisms that are responsible for the rapid deactivation of the (1)npi and( 1)pipi excited singlet states of the 9H isomer of adenine have been investigated with multireference ab initio methods (complete-active-space self-consistent-field (CASSCF) method and second-order perturbation theory based on the CASSCF reference (CASPT2)). Two novel photochemical pathways, which lead to conical intersections of the S(1) excited potential-energy surface with the electronic ground-state surface, have been identified. They involve out-of-plane deformations of the six-membered aromatic ring via the twisting of the N(3)C(2) and N(1)C(6) bonds. These low-lying conical intersections are separated from the minimum energy of the lowest ((1)npi) excited state in the Franck-Condon region by very low energy barriers (of the order of 0.1 eV). These properties of the S(1) and S(0) potential-energy surfaces explain the unusual laser-induced fluorescence spectrum of jet-cooled 9H-adenine, showing sharp structures only in a narrow energy interval near the origin, as well as the extreme excess-energy dependence of the lifetime of the singlet excited states. It is suggested that internal-conversion processes via conical intersections, which are accessed by out-of-plane deformation of the six-membered ring, dominate the photophysics of the lowest vibronic levels of adenine in the gas phase, while hydrogen-abstraction photochemistry driven by repulsive (1)pisigma states may become competitive at higher excitation energies. These ultrafast excited-state deactivation processes provide adenine with a high degree of intrinsic photostability.


Subject(s)
Adenine/chemistry , Isomerism , Models, Molecular , Photochemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...