Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(19): 7235-7249, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37126665

ABSTRACT

The construction of photoactive units in the proximity of a stable framework support is one of the promising strategies for uplifting photocatalysis. In this work, the ultrasmall Pd NPs implanted onto core-shell (CS) metal organic frameworks (MOFs), i.e., CS@Pd nanoarchitectures with tailored electronic and structural properties are reported. The all-in-one heterogeneous catalyst CS@Pd3 improves the surface functionalities and exhibits an outstanding hydrogen evolution reaction (HER) activity rate of 12.7 mmol g-1 h-1, which is 10-folds higher than the pristine frameworks with an apparent quantum efficiency (AQE) of 9.02%. The bifunctional CS@Pd shows intriguing results when subjected to photocatalytic CO2 reduction with an impressive rate of 71 µmol g-1 h-1 of MeOH under visible-light irradiation at ambient conditions. Spectroscopic data reveal efficient charge migrations and an extended lifetime of 2.4 ns, favoring efficient photocatalysis. The microscopic study affirms the formation of well-ordered CS morphology with precise decoration of Pd NPs over the CS networks. The significance of active Pd and Co sites is addressed by congruent charge-transfer kinetics and computational density functional theory calculations of CS@Pd, which validate the experimental findings with their synergistic involvement in improved photocatalytic activity. This present work provides a facile and competent avenue for the systematic construction of MOF-based CS heterostructures with active Pd NPs.

2.
J Org Chem ; 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36534041

ABSTRACT

In this work, a 2H-pyran-2-one-functionalized diketopyrrolopyrrole (DPP) (coded as receptor 1) was designed, synthesized, and fully characterized by various spectroscopic methods. The physical properties of molecular architecture 1 were studied employing theoretical calculations. Receptor 1 was elegantly scrutinized for the sensing of explosive nitroaromatic compounds (NACs). Receptor 1 exhibited detection of nitro explosives, i.e., picric acid (PA), 2,4-dinitrophenol (DNP), and nitrophenol (NP), via the fluorescence quenching mechanism. The Stern-Volmer equation was employed to evaluate the effectiveness of the quenching process. It was found that 1 exhibited a detection limit of about 7.58 × 10-5, 8.35 × 10-5, and 9.05 × 10-5 M toward PA, DNP, and NP, respectively. The influence of interfering metal ions and anions on PA detection was investigated thoroughly. Furthermore, receptor 1-based low-cost fluorescent thin-layer chromatography (TLC) plates were developed for the recognition of PA.

3.
Commun Chem ; 5(1): 165, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36697663

ABSTRACT

Conjugated polymers and titanium-based metal-organic framework (Ti-MOF) photocatalysts have demonstrated promising features for visible-light-driven hydrogen production. We report herein a strategy of anisotropic phenanthroline-based ruthenium polymers (PPDARs) over Ti-MOF, a tunable platform for efficient visible-light-driven photocatalytic hydrogen evolution reaction (HER). Several analytical methods including X-ray absorption spectroscopy (XAS) revealed the judicious integration of the surface-active polymer over the Ti-MOF reinforcing the catalytic activity over the broad chemical space. PPDAR-4 polyacrylate achitecture led to a substantial increase in the H2 evolution rate of 2438 µmolg-1h-1 (AQY: 5.33%) compared to pristine Ti-MOF (238 µmol g-1 h-1). The separation of photogenerated charge carriers at the PPDAR-4/Ti-MOF interface was confirmed by the optical and electrochemical investigations. The experimental, as well as theoretical data, revealed their physical and chemical properties which are positively correlated with the H2 generation rate. This offers a new avenue in creating polymer-based MOF robust photocatalysts for sustainable energy.

4.
Chem Commun (Camb) ; 57(69): 8660-8663, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34373883

ABSTRACT

A highly efficient hybrid ZnCdS-rGO/MoS2 heterostructure is successfully synthesized through a hot injection method and control loading of rGO/MoS2. The synergism provides an unprecedently high H2-generation rate of 193.4 mmol H2 g-1 h-1 from water under full arc solar radiation and MeOH production (5.26 mmol g-1 h-1, AQY of 14.6% at λ = 420 ± 20 nm) from CO2 reduction.

SELECTION OF CITATIONS
SEARCH DETAIL
...