Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Biol Med (Maywood) ; 243(11): 917-925, 2018 07.
Article in English | MEDLINE | ID: mdl-29958504

ABSTRACT

The chromatoid body is a cytoplasmic male germ cell structure that plays a role in the regulation of mRNA transcription during spermatogenesis. A proteomic analysis of this structure has identified the presence of its classic molecular markers (MVH and MIWI), as well as a significant number of transient proteins. Circadian locomotor output cycles protein kaput (CLOCK) and brain and muscle ARNT-like 1 (BMAL1), which are molecular components of the circadian clock, are likely located in the chromatoid body in a transient fashion. This study sought to determine whether aging produces morphological changes in the chromatoid bodies of round spermatids similar to those previously observed in BMAL1 knockout mice. A sample of 30 male mice was divided into three groups: juvenile mice (45 days old), adult mice (120 days old), and old mice (+180 days old). Aging was confirmed by viability and sperm count analyses and testosterone dosage. Squash slides prepared with fragments of seminiferous tubules were immunostained for MVH, MIWI, BMAL1, and CLOCK detection. In juvenile and adult specimens, single round chromatoid bodies were observed using MVH/BMAL1 and MIWI/CLOCK immunostaining. In old specimens, many chromatoid bodies displayed changes in number and morphology, as well as an increase in the interactions between MVH and BMAL1; MIWI and CLOCK. Changes in chromatoid body morphology increased interactions between the proteins analyzed herein, and decreased amounts of these proteins in seminiferous tubules of older mice may indicate that aging influences the assembly and physiology of chromatoid bodies, which may, in turn, affect fertility. Impact statement The results discussed in this paper indicate that aging compromises the structure and physiology of chromatoid bodies (CBs) in post-meiotic male cells. Since CB is a fundamental structure for the differentiation of the mature male germ cell it is possible that this imbalance in CB physiology may play a role in the reduction of fertility in older men. It is important to note that not only the classic CB markers (such as the MIWI and MVH proteins) were used to showcase the structural changes in the CBs but also the main components of circadian cycle control (the CLOCK and BMAL1 proteins), indicating that the reduction of circadian control in aged males may contribute to these changes in CBs as well. Therefore, it is intriguing to evaluate the hypothesis that controlling these physiological/structural changes in CBs may be a way of delaying the effects of aging in males.


Subject(s)
Aging/pathology , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/ultrastructure , Spermatids/pathology , ARNTL Transcription Factors/analysis , Age Factors , Animals , Argonaute Proteins/analysis , CLOCK Proteins/analysis , DEAD-box RNA Helicases/analysis , Male , Mice , Microscopy, Fluorescence , Nucleoproteins/metabolism
2.
PLoS One ; 7(8): e42695, 2012.
Article in English | MEDLINE | ID: mdl-22900038

ABSTRACT

Spermatogenesis is a complex differentiation process that involves genetic and epigenetic regulation, sophisticated hormonal control, and extensive structural changes in male germ cells. RNA nuclear and cytoplasmic bodies appear to be critical for the progress of spermatogenesis. The chromatoid body (CB) is a cytoplasmic organelle playing an important role in RNA post-transcriptional and translation regulation during the late steps of germ cell differentiation. The CB is also important for fertility determination since mutations of genes encoding its components cause infertility by spermatogenesis arrest. Targeted ablation of the Bmal1 and Clock genes, which encode central regulators of the circadian clock also result in fertility defects caused by problems other than spermatogenesis alterations. We show that the circadian proteins CLOCK and BMAL1 are localized in the CB in a stage-specific manner of germ cells. Both BMAL1 and CLOCK proteins physically interact with the ATP-dependent DEAD-box RNA helicase MVH (mouse VASA homolog), a hallmark component of the CB. BMAL1 is differentially expressed during the spermatogenic cycle of seminiferous tubules, and Bmal1 and Clock deficient mice display significant CB morphological alterations due to BMAL1 ablation or low expression. These findings suggest that both BMAL1 and CLOCK contribute to CB assembly and physiology, raising questions on the role of the circadian clock in reproduction and on the molecular function that CLOCK and BMAL1 could potentially have in the CB assembly and physiology.


Subject(s)
ARNTL Transcription Factors/genetics , CLOCK Proteins/genetics , Cytoplasmic Granules/metabolism , Germ Cells/metabolism , RNA Processing, Post-Transcriptional , ARNTL Transcription Factors/metabolism , Animals , CLOCK Proteins/metabolism , Cytoplasmic Granules/ultrastructure , Male , Mice , Mice, Knockout , Protein Binding , Protein Transport , Spermatids/metabolism , Spermatogenesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...