Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(23): 15907-15914, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756851

ABSTRACT

In dye sensitized solar cells, the role of the electron transport layer is crucial because it makes it easier for photo-generated electrons to get from the dye to the external circuit. In DSSCs, the utilization of TiO2 is likely to be given preference in the production of electron transport electrodes due to its notable characteristics such as its expansive surface area, porosity, and capacity to scatter light. Nevertheless, the presence of heterogeneity within the mesoporous structure increases the likelihood of TiO2 aggregation, which subsequently diminishes the beneficial impact of TiO2 on the performance of DSSCs. In this context, reduced graphene oxide (r-GO) is introduced as an additive into the TiO2 network during the preparation of TiO2/reduced graphene oxide (r-GO) composites. The integration of r-GO with TiO2 has been recognized as a promising approach to enhance electron transport and electron lifespan, owing to remarkable qualities exhibited by r-GO. The present investigation involved the synthesis of a composite material including titanium dioxide/reduced graphene oxide (TiO2/r-GO) through the utilization of the co-precipitation technique. Following this, the generated TiO2/r-GO composite material and pure TiO2 were deposited on FTO through electrophoretic deposition to obtain an electron transport electrode of a dye sensitized solar cell. It should be noted that when r-GO was combined with TiO2, the performance of DSSCs improved notably compared to pure TiO2. As a result, the findings of this work have significant implications for the advancement of the TiO2/r-GO composite deposited through electrophoretic deposition. The power conversion efficiency reached 6.64% with the addition of r-GO in the metal oxide electron transport electrode. The obtained findings align with the outcomes of electrochemical impedance investigations in which the electrode constructed with TiO2/r-GO exhibits reduced electron transport resistance (RCt) at the anode/dye/electrolyte interface, as well as lower overall resistance (Rtotal) in comparison to TiO2-based DSSCs. These advancements have the potential to be employed in commercial DSSC manufacturing.

2.
RSC Adv ; 13(29): 20255-20263, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37425635

ABSTRACT

Carbon dots and copper indium sulfide are promising photovoltaic materials, which have so far been fabricated mainly by chemical deposition methods. In this work, carbon dots (CDs) and copper indium sulfide (CIS) were separately combined with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) for the preparation of stable dispersions. These prepared dispersions were used to produce CIS-PEDOT:PSS and CDs-PEDOT:PSS films using the ultrasonic spray deposition (USD) approach; furthermore, platinum (Pt) electrodes were fabricated and tested for flexible dye sensitized solar cells (FDSSCs). All the fabricated electrodes were utilized as counter electrodes for FDSSCs, and the power conversion efficiency of the FDSSCs reached 4.84% after 100 mW cm-2 AM1.5 white light was used to excite the cells. More investigation reveals that the improvement might be caused by the CDs film's porosity network and its strong connection to the substrate. These factors increase the number of sites available for the effective catalysis of redox couples in the electrolyte and facilitate the movement of charge in the FDSSC. It was also emphasized that the CIS film in the FDSSC device helps to generate a photo-current. In the beginning, this work shows how the USD approach can create CIS-PEDOT:PSS and CDs-PEDOT:PSS films and confirms that a CD based counter electrode film produced using the USD method is an interesting replacement for the Pt CE in FDSSC devices, while the results obtained from CIS-PEDOT:PSS are also comparable with standard Pt CE in FDSSCs.

3.
Phys Chem Chem Phys ; 25(1): 428-438, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36477765

ABSTRACT

Here, we introduce the synthesis and deposition of organic/inorganic composite ink on cellulose paper using a rapid ultrasonic spray deposition approach that can be incorporated as a counter electrode (CE) in flexible dye-sensitized solar cells (FDSSCs). The composite ink comprised a copper indium sulfide (CuInS2) nanostructure ink and dispersion of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) in water. Fabricated counter electrodes are biodegradable, environment-friendly, flexible, and economical and meet the requirements for sustainable green energy. To evaluate the catalytic activities and power conversion efficiencies of DSSCs, the produced CuInS2/PEDOT:PSS composite ink-based CEs were compared with PEDOT:PSS counter electrodes. Cyclic voltammetry studies found that CuInS2/PEDOT:PSS had a greater cathodic charge transfer current density (Jc) (-1.23 mA cm-2). Moreover, it was found that the potential separation values are small, which indicate a stronger catalytic activity than PEDOT:PSS counter electrodes. The observed exchange current density (J0) was 3.98 mA cm-2, while the limiting current density (Jlim) increased to 45.7 mA cm-2, indicating a fast redox diffusion rate of the CuInS2/PEDOT:PSS CE. The photovoltaic performances of CuInS2/PEDOT:PSS and PEDOT: PSS-based DSSC's were measured and determined to be 5.66% and 4.41%, respectively, while the performance of CuInS2/PEDOT:PSS FDSSC composed of cellulose paper was 1.06%.

SELECTION OF CITATIONS
SEARCH DETAIL
...