Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Ocul Pharmacol Ther ; 39(5): 332-346, 2023 06.
Article in English | MEDLINE | ID: mdl-37200453

ABSTRACT

Purpose: To evaluate the pharmacokinetic profiles of the ocular hypotensive agent QLS-101, a novel ATP-sensitive potassium channel opening prodrug, and its active moiety levcromakalim, following topical ophthalmic and intravenous dosing of normotensive rabbits and dogs. Methods: Dutch belted rabbits (n = 85) and beagle dogs (n = 32) were dosed with QLS-101 (0.16-3.2 mg/eye/dose) or formulation buffer for 28 days. Pharmacokinetic profiles of QLS-101 and levcromakalim were evaluated in ocular tissues and blood by LC-MS/MS. Tolerability was assessed by clinical and ophthalmic examinations. Maximum systemic tolerated dose was evaluated in beagle dogs (n = 2) following intravenous bolus administrations of QLS-101 (0.05 to 5 mg/kg). Results: Plasma analysis following topical dosing of QLS-101 (0.8-3.2 mg/eye/dose) for 28 days indicated an elimination half-life (T1/2) of 5.50-8.82 h and a corresponding time (Tmax) range of 2-12 h in rabbits, and a T1/2 of 3.32-6.18 h with a Tmax range of 1-2 h in dogs. Maximum tissue concentration (Cmax) values ranged from 54.8-540 (day 1) to 50.5-777 ng/mL (day 28) in rabbits, and 36.5-166 (day 1) to 47.0-147 ng/mL (day 28) in dogs. Levcromakalim plasma T1/2 and Tmax were similar to QLS-101, while Cmax was consistently lower. Topical ophthalmic delivery of QLS-101 was well tolerated in both species, with sporadic mild ocular hyperemia noted in the group treated with the highest concentration (3.2 mg/eye/dose). Following topical ophthalmic dosing, QLS-101 and levcromakalim were found primarily in the cornea, sclera, and conjunctiva. Maximum tolerated dose was determined to be 3 mg/kg. Conclusions: QLS-101 was converted to its active moiety levcromakalim and showed characteristic absorption, distribution, and safety profiles of a well-tolerated prodrug.


Subject(s)
Prodrugs , Animals , Rabbits , Dogs , Cromakalim , Chromatography, Liquid , Prodrugs/pharmacokinetics , Prodrugs/therapeutic use , Tandem Mass Spectrometry , Cornea , Antihypertensive Agents/therapeutic use , Administration, Topical , Ophthalmic Solutions
2.
Invest Ophthalmol Vis Sci ; 63(4): 26, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35486069

ABSTRACT

Purpose: To characterize the ocular hypotensive and pharmacological properties of QLS-101, a novel ATP-sensitive potassium (KATP) channel opening prodrug. Methods: Ocular hypotensive properties of QLS-101 were evaluated by measuring IOP with a handheld rebound tonometer after daily topical ocular instillation of 0.2% (n = 5) or 0.4% QLS-101 (n = 10) in C57BL/6J mice. KATP channel specificity was characterized in HEK-293 cells stably expressing human Kir6.2/SUR2B subunits and assessed for off-target interactions using a receptor binding screen. Conversion of QLS-101 prodrug to its active moiety, levcromakalim, was evaluated in vitro using human ocular tissues and plasma samples and after incubation with human phosphatase enzymes (2.0 nM-1.0 µM). Results: C57BL/6J mice treated once daily with 0.2% QLS-101 exhibited significant (P < 0.01) IOP reductions of 2.1 ± 0.4 mmHg after five days; however, a daily attenuation of the effect was noted by 23h post-dose. By comparison, treatment with 0.4% QLS-101 lowered IOP by 4.8 ± 0.7 mm Hg (P < 0.0001) which was sustained for 24 hours. Unlike levcromakalim, QLS-101 failed to induce KATP channel activity in HEK-Kir6.2/SUR2B cells consistent with its development as a prodrug. No off-target receptor effects were detected with either compound. In vitro ocular tissue conversion of QLS-101 prodrug was identified in human iris, ciliary body, trabecular meshwork, and sclera. Alkaline phosphatase was found to convert QLS-101 (mean Km = 630 µM, kcat = 15 min-1) to levcromakalim. Conclusions: QLS-101 is a novel KATP channel opening prodrug that when converted to levcromakalim shows 24-hour IOP lowering after once-daily topical ocular administration.


Subject(s)
KATP Channels , Prodrugs , Adenosine Triphosphate/metabolism , Animals , Cromakalim , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Potassium , Prodrugs/pharmacology , Trabecular Meshwork/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...