Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Mol Neurosci ; 14: 757264, 2021.
Article in English | MEDLINE | ID: mdl-34776865

ABSTRACT

Mechanical events and alterations in neuronal morphology that accompany neuronal activity have been observed for decades. However, no clear neurophysiological role, nor an agreed molecular mechanism relating these events to the electrochemical process, has been found. Here we hypothesized that intense, yet physiological, electrical activity in neurons triggers cytoskeletal depolymerization. We excited the sciatic nerve of anesthetized mice with repetitive electric pulses (5, 10, and 100 Hz) for 1 and 2 min and immediately fixed the excised nerves. We then scanned the excised nerves with high-resolution transmission electron microscopy, and quantified cytoskeletal changes in the resulting micrographs. We demonstrate that excitation with a stimulation frequency that is within the physiological regime is accompanied by a significant reduction in the density of cytoskeletal proteins relative to the baseline values recorded in control nerves. After 10 Hz stimulation with durations of 1 and 2 min, neurofilaments density dropped to 55.8 and 51.1% of the baseline median values, respectively. In the same experiments, microtubules density dropped to 23.7 and 38.5% of the baseline median values, respectively. These changes were also accompanied by a reduction in the cytoskeleton-to-cytoplasm contrast that we attribute to the presence of depolymerized electron-dense molecules in the lumen. Thus, we demonstrate with an in vivo model a link between electrical activity and immediate cytoskeleton rearrangement at the nano-scale. We suggest that this cytoskeletal plasticity reduces cellular stiffness and allows cellular homeostasis, maintenance of neuronal morphology and that it facilitates in later stages growth of the neuronal projections.

2.
Nat Commun ; 12(1): 6914, 2021 11 25.
Article in English | MEDLINE | ID: mdl-34824257

ABSTRACT

Mislocalization of the predominantly nuclear RNA/DNA binding protein, TDP-43, occurs in motor neurons of ~95% of amyotrophic lateral sclerosis (ALS) patients, but the contribution of axonal TDP-43 to this neurodegenerative disease is unclear. Here, we show TDP-43 accumulation in intra-muscular nerves from ALS patients and in axons of human iPSC-derived motor neurons of ALS patient, as well as in motor neurons and neuromuscular junctions (NMJs) of a TDP-43 mislocalization mouse model. In axons, TDP-43 is hyper-phosphorylated and promotes G3BP1-positive ribonucleoprotein (RNP) condensate assembly, consequently inhibiting local protein synthesis in distal axons and NMJs. Specifically, the axonal and synaptic levels of nuclear-encoded mitochondrial proteins are reduced. Clearance of axonal TDP-43 or dissociation of G3BP1 condensates restored local translation and resolved TDP-43-derived toxicity in both axons and NMJs. These findings support an axonal gain of function of TDP-43 in ALS, which can be targeted for therapeutic development.


Subject(s)
Axons/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Inhibition, Psychological , Mitochondrial Proteins/metabolism , Neuromuscular Junction/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Animals , C9orf72 Protein/genetics , DNA Helicases , DNA-Binding Proteins/genetics , DNA-Binding Proteins/pharmacology , Disease Models, Animal , Female , Humans , Induced Pluripotent Stem Cells , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Motor Neurons , Neurodegenerative Diseases/drug therapy , Neuromuscular Junction/drug effects , Neurons/drug effects , Neurons/metabolism , Neurons, Efferent , Phosphorylation , Poly-ADP-Ribose Binding Proteins , RNA Helicases , RNA Recognition Motif Proteins
3.
EMBO J ; 40(17): e107586, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34190355

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal non-cell-autonomous neurodegenerative disease characterized by the loss of motor neurons (MNs). Mutations in CRMP4 are associated with ALS in patients, and elevated levels of CRMP4 are suggested to affect MN health in the SOD1G93A -ALS mouse model. However, the mechanism by which CRMP4 mediates toxicity in ALS MNs is poorly understood. Here, by using tissue from human patients with sporadic ALS, MNs derived from C9orf72-mutant patients, and the SOD1G93A -ALS mouse model, we demonstrate that subcellular changes in CRMP4 levels promote MN loss in ALS. First, we show that while expression of CRMP4 protein is increased in cell bodies of ALS-affected MN, CRMP4 levels are decreased in the distal axons. Cellular mislocalization of CRMP4 is caused by increased interaction with the retrograde motor protein, dynein, which mediates CRMP4 transport from distal axons to the soma and thereby promotes MN loss. Blocking the CRMP4-dynein interaction reduces MN loss in human-derived MNs (C9orf72) and in ALS model mice. Thus, we demonstrate a novel CRMP4-dependent retrograde death signal that underlies MN loss in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Axonal Transport , Nerve Tissue Proteins/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , Axons/metabolism , Cell Death , Cell Line , Cells, Cultured , Dyneins/metabolism , Mice , Mice, Inbred C57BL , Motor Neurons/metabolism , Motor Neurons/pathology , Nerve Tissue Proteins/genetics , Signal Transduction , Superoxide Dismutase-1/genetics
4.
J Vis Exp ; (159)2020 05 05.
Article in English | MEDLINE | ID: mdl-32449725

ABSTRACT

Motor neurons (MNs) are highly polarized cells with very long axons. Axonal transport is a crucial mechanism for MN health, contributing to neuronal growth, development, and survival. We describe a detailed method for the use of microfluidic chambers (MFCs) for tracking axonal transport of fluorescently labeled organelles in MN axons. This method is rapid, relatively inexpensive, and allows for the monitoring of intracellular cues in space and time. We describe a step by step protocol for: 1) Fabrication of polydimethylsiloxane (PDMS) MFCs; 2) Plating of ventral spinal cord explants and MN dissociated culture in MFCs; 3) Labeling of mitochondria and acidic compartments followed by live confocal imagining; 4) Manual and semiautomated axonal transport analysis. Lastly, we demonstrate a difference in the transport of mitochondria and acidic compartments of HB9::GFP ventral spinal cord explant axons as a proof of the system validity. Altogether, this protocol provides an efficient tool for studying the axonal transport of various axonal components, as well as a simplified manual for MFC usage to help discover spatial experimental possibilities.


Subject(s)
Axonal Transport , Cell Culture Techniques/instrumentation , Lab-On-A-Chip Devices , Motor Neurons/cytology , Organelles/metabolism , Animals , Dimethylpolysiloxanes , Mitochondria/metabolism , Spinal Cord/cytology
5.
Front Mol Neurosci ; 11: 311, 2018.
Article in English | MEDLINE | ID: mdl-30233312

ABSTRACT

Local protein synthesis in neuronal axons plays an important role in essential spatiotemporal signaling processes; however, the molecular basis for the post-transcriptional regulation controlling this process in axons is still not fully understood. Here we studied the axonal mechanisms underlying the transport and localization of microRNA (miRNA) and the RNAi machinery along the axon. We first identified miRNAs, Dicer, and Argonaute-2 (Ago2) in motor neuron (MN) axons. We then studied the localization of RNAi machinery and demonstrated that mitochondria associate with miR-124 and RNAi proteins in axons. Importantly, this co-localization occurs primarily at axonal branch points and growth cones. Moreover, using live cell imaging of a functional Cy3-tagged miR-124, we revealed that this miRNA is actively transported with acidic compartments in axons, and associates with stalled mitochondria at growth cones and axonal branch points. Finally, we observed enhanced retrograde transport of miR-124-Cy3, and a reduction in its localization to static mitochondria in MNs expressing the ALS causative gene hSOD1G93A. Taken together, our data suggest that mitochondria participate in the axonal localization and transport of RNAi machinery, and further imply that alterations in this mechanism may be associated with neurodegeneration in ALS.

6.
Sci Signal ; 11(529)2018 05 08.
Article in English | MEDLINE | ID: mdl-29739881

ABSTRACT

Tropomyosin-related tyrosine kinase B (TrkB) is the receptor for brain-derived neurotrophic factor (BDNF) and provides critical signaling that supports the development and function of the mammalian nervous system. Like other receptor tyrosine kinases (RTKs), TrkB is thought to signal as a dimer. Using cell imaging and biochemical assays, we found that TrkB acted as a monomeric receptor at the plasma membrane regardless of its binding to BDNF and initial activation. Dimerization occurred only after the internalization and accumulation of TrkB monomers within BDNF-containing endosomes. We further showed that dynamin-mediated endocytosis of TrkB-BDNF was required for the effective activation of the kinase AKT but not of the kinase ERK1/2. Thus, we report a previously uncharacterized mode of monomeric signaling for an RTK and a specific role for the endosome in TrkB homodimerization.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Cell Membrane/metabolism , Dynamins/metabolism , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Protein Multimerization , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Animals , Endocytosis , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred ICR , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism
7.
Sci Rep ; 8(1): 59, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311649

ABSTRACT

microRNAs (miRNAs) are critical for neuronal function and their dysregulation is repeatedly observed in neurodegenerative diseases. Here, we implemented high content image analysis for investigating the impact of several miRNAs in mouse primary motor neurons. This survey directed our attention to the neuron-specific miR-124, which controls axonal morphology. By performing next generation sequencing analysis and molecular studies, we characterized novel roles for miR-124 in control of mitochondria localization and function. We further demonstrated that the intermediate filament Vimentin is a key target of miR-124 in this system. Our data establishes a new pathway for control of mitochondria function in motor neurons, revealing the value of a neuron-specific miRNA gene as a mechanism for the re-shaping of otherwise ubiquitously-expressed intermediate filament network, upstream of mitochondria activity and cellular metabolism.


Subject(s)
Gene Expression Regulation , MicroRNAs/genetics , Mitochondria/genetics , Mitochondria/metabolism , Motor Neurons/metabolism , RNA Interference , Vimentin/genetics , Animals , Axons , Cells, Cultured , Computational Biology/methods , Gene Expression Profiling , Gene Ontology , Mice , Molecular Imaging , Transcriptome , Vimentin/metabolism
8.
Phys Chem Chem Phys ; 20(16): 10697-10712, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29303516

ABSTRACT

The equilibration of H2, HD and D2 between the gas phase and surface hydrides of solid organic-ligand-stabilized Ru metal nanoparticles has been studied by gas phase 1H NMR spectroscopy using closed NMR tubes as batch reactors at room temperature and 800 mbar. When two different nanoparticle systems, Ru/PVP (PVP ≡ polyvinylpyrrolidone) and Ru/HDA (HDA ≡ hexadecylamine) were exposed to D2 gas, only the release of HD from the hydride containing surface could be detected in the initial stages of the reaction, but no H2. In the case of Ru/HDA also the reverse experiment was performed where surface deuterated nanoparticles were exposed to H2. In that case, the conversion of H2 into gaseous HD was detected. In order to analyze the experimental kinetic and spectroscopic data, we explored two different mechanisms taking into account potential kinetic and equilibrium H/D isotope effects. Firstly, we explored the dissociative exchange mechanism consisting of dissociative adsorption of dihydrogen, fast hydride surface diffusion and associative desorption of dihydrogen. It is shown that if D2 is the reaction partner, only H2 will be released in the beginning of the reaction, and HD only in later reaction stages. The second mechanism, dubbed here associative exchange consists of the binding of dihydrogen to Ru surface atoms, followed by a H-transfer to or by H-exchange with an adjacent hydride site, and finally of the associative desorption of dihydrogen. In that case, in the exchange with D2, only HD will be released in the beginning of the reaction. Our experimental results are not compatible with the dissociative exchange but can be explained in terms of the associative exchange. Whereas the former will dominate at low temperatures and pressures, the latter will prevail around room temperature and normal pressures where transition metal nanoparticles are generally used as reaction catalysts.

9.
Mol Cell Proteomics ; 15(2): 506-22, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26598648

ABSTRACT

Synapse disruption takes place in many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). However, the mechanistic understanding of this process is still limited. We set out to study a possible role for dynein in synapse integrity. Cytoplasmic dynein is a multisubunit intracellular molecule responsible for diverse cellular functions, including long-distance transport of vesicles, organelles, and signaling factors toward the cell center. A less well-characterized role dynein may play is the spatial clustering and anchoring of various factors including mRNAs in distinct cellular domains such as the neuronal synapse. Here, in order to gain insight into dynein functions in synapse integrity and disruption, we performed a screen for novel dynein interactors at the synapse. Dynein immunoprecipitation from synaptic fractions of the ALS model mSOD1(G93A) and wild-type controls, followed by mass spectrometry analysis on synaptic fractions of the ALS model mSOD1(G93A) and wild-type controls, was performed. Using advanced network analysis, we identified Staufen1, an RNA-binding protein required for the transport and localization of neuronal RNAs, as a major mediator of dynein interactions via its interaction with protein phosphatase 1-beta (PP1B). Both in vitro and in vivo validation assays demonstrate the interactions of Staufen1 and PP1B with dynein, and their colocalization with synaptic markers was altered as a result of two separate ALS-linked mutations: mSOD1(G93A) and TDP43(A315T). Taken together, we suggest a model in which dynein's interaction with Staufen1 regulates mRNA localization along the axon and the synapses, and alterations in this process may correlate with synapse disruption and ALS toxicity.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Cytoplasmic Dyneins/genetics , Proteomics , RNA-Binding Proteins/biosynthesis , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Axons/metabolism , Axons/pathology , Cytoplasmic Dyneins/metabolism , Disease Models, Animal , Humans , Mice , Motor Neurons/metabolism , Motor Neurons/pathology , Mutation , RNA-Binding Proteins/genetics , Synapses/genetics , Synapses/metabolism , Synapses/pathology , Synaptosomes/metabolism , Synaptosomes/pathology
10.
J Am Chem Soc ; 130(51): 17502-8, 2008 Dec 24.
Article in English | MEDLINE | ID: mdl-19053461

ABSTRACT

The (2)H solid-state NMR spectra of the transition metal complexes Tp*RuD(THT)(2) (1a), Tp*RuD(D(2))(THT) (1b), Tp*RuD(D(2))(2) (1c), Cp*RuD(3)(PPh(3)) (2) and RuD(2)(eta(2)-D(2))(2)(PCy(3))(2) (3) have been measured in a wide temperature range. These compounds were chosen as potential model systems for hydrogen surface species in Ru-nanoparticles. The deuterium quadrupolar coupling constants Q(cc) and asymmetry parameters were extracted by (2)H NMR line-shape analysis. The Q(cc) values of the deuterons bound to the metal vary between 13 kHz and 76 kHz. In addition all spectra show that some of the deuterium is incorporated into carbon positions exhibiting quadrupolar coupling constants in the range of 134 kHz to 192 kHz. The room temperature spectra contain an additional weak very narrow line which was assigned to deuterons exhibiting a high mobility. These deuterons are attributed to crystallographic impurity and partially to D(2) molecules which lost by the complexes. The temperature where their motion is quenched and the types of these motions depend on the chemical structure. We propose to use the values of the quadrupolar coupling constants measured in order to characterize different hydrogen species on the surface of Ru-nanoparticles.

12.
Chemphyschem ; 7(3): 551-4, 2006 Mar 13.
Article in English | MEDLINE | ID: mdl-16493700

ABSTRACT

The phenomenon of exchange coupling is taken into account in the description of the magnetic nuclear spin conversion between bound ortho- and para-dihydrogen. This conversion occurs without bond breaking, in contrast to the chemical spin conversion. It is shown that the exchange coupling needs to be reduced so that the corresponding exchange barrier can increase and the given magnetic interaction can effectively induce a spin conversion. The implications for related molecules such as water are discussed. For ice, a dipolar magnetic conversion and for liquid water a chemical conversion are predicted to occur within the millisecond timescale. It follows that a separation of water into its spin isomers, as proposed by Tikhonov and Volkov (Science 2002, 296, 2363), is not feasible. Nuclear spin temperatures of water vapor in comets, which are smaller than the gas-phase equilibrium temperatures, are proposed to be diagnostic for the temperature of the ice or the dust surface from which the water was released.

14.
J Am Chem Soc ; 126(27): 8366-7, 2004 Jul 14.
Article in English | MEDLINE | ID: mdl-15237979

ABSTRACT

Some transition metal complexes are known to catalyze ortho/para hydrogen conversion, hydrogen isotope scrambling, and hydrogenation reactions in liquid solution. Using the example of Vaska's complex, we present here evidence by NMR that the solvent is not necessary for these reactions to occur. Thus, solid frozen solutions or polycrystalline powdered samples of homogeneous catalysts may become heterogeneous catalysts. Comparative liquid- and solid-state studies provide novel insight into the reaction mechanisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...