Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1389069, 2024.
Article in English | MEDLINE | ID: mdl-38765688

ABSTRACT

The use of dead probiotics and their cellular metabolites seems to exhibit immunomodulatory and anti-inflammatory properties, providing protection against pathogens. These inanimate microorganisms, often referred to as tyndallized or heat-killed bacteria, are a new class of probiotics employed in clinical practice. Safety concerns regarding the extensive use of live microbial cells have increased interest in inactivated bacteria, as they could eliminate shelf-life problems and reduce the risks of microbial translocation and infection. Culture-dependent methods are not suitable for the quality assessment of these products, and alternative methods are needed for their quantification. To date, bacterial counting chambers and microscopy have been used for tyndallized bacteria enumeration, but no alternative validated methods are now available for commercial release. The aim of the present study is to design a new method for the qualitative and quantitative determination of tyndallized bacterial cells using flow cytometric technology. Using a live/dead viability assay based on two nucleic acid stains, thiazole orange (TO) and propidium iodide (PI), we optimized a workflow to evaluate bacterial viability beyond the reproduction capacity that provides information about the structural properties and metabolic activities of probiotics on FACSVerse without using beads as a reference. The data obtained in this study represent the first analytical application that works effectively both on viable and non-viable cells. The results provided consistent evidence, and different samples were analyzed using the same staining protocol and acquisition settings. No significant discrepancies were highlighted between the declared specification of commercial strain and the analytical data obtained. For the first time, flow cytometry was used for counting tyndallized bacterial cells as a quality control assessment in probiotic production. This aspect becomes important if applied to medical devices where we cannot boast metabolic but only mechanical activities.

2.
Pathogens ; 13(2)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38392879

ABSTRACT

Microbial contamination and foodborne infections are a significant global public health concern. For this reason, the detection, monitoring, and characterization of pathogens represent a significant challenge in quality control settings. Standard approaches, such as culture methods and biochemical tests, are known to be very time-consuming and intensive. Conversely, molecular technologies based on the genomic identification of bacteria are quick and low-cost. Listeria monocytogenes is an opportunistic pathogen and a major concern especially in food industries. It is important to understand and implement multiple quality control measures to control Listeria infection risk and prevent the contamination of products. Standardized detection and confirmation tests such as the API Listeria test, MALDI-TOF MS, and PCR analysis are available. The aim of our work is to provide a specific molecular method, designed according to the EN UNI ISO 16140-3:2021, for the specific detection, monitoring, and characterization of Listeria spp. and Listeria monocytogenes contamination. The verification of this new rapid approach by real-time PCR (qPCR) overcomes the limitations of culture-based techniques, meeting all the verification criteria required by ISO guidelines, including implementation and item confirmation. This system offers a powerful approach to the real-time assessment of food safety, useful for industry self-monitoring and regulatory inspection.

3.
Nutrients ; 14(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36501115

ABSTRACT

Research surrounding health benefits from probiotics is becoming popular because of the increasing demand for safer products with protective and therapeutic effects. Proven benefits are species- or genus-specific; however, no certified assays are available for their characterization and quantification at the strain level in the food supplement industry. The objective of this study was to develop a strain-specific Real-time quantitative polymerase chain reaction (RT-qPCR)-based method to be implemented in routine tests for the identification and quantification of Bifidobacterium longum, Bifidobacterium animalis spp. lactis, Lactobacillus paracasei, Lactobacillus rhamnosus, Lactobacillus casei, Bifidobacterium breve, Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus helveticus, starting from a powder mixture of food supplements. The method optimization was carried out in combination with flow cytometry to compare results between the two strategies and implement the analytical workflow with the information also regarding cell viability. These assays were validated in accordance with the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) criteria using the plate count enumeration as the gold standard reference. Briefly, probiotic DNAs were extracted from two powder food supplements. Strain-specific primers targeting unique sequence regions of 16S RNA were identified and amplified by RT-qPCR. Primers were tested for specificity, sensitivity, and efficiency. Both RT-qPCR and flow-cytometry methods described in our work for the quantification and identification of Lactobacillus and Bifidobacterium strains were specific, sensitive, and precise, showing better performances with respect to the morphological colony identification. This work demonstrated that RT-qPCR can be implemented in the quality control workflow of commercial probiotic products giving more standardized and effective results regarding species discrimination.


Subject(s)
Lacticaseibacillus casei , Lactobacillus helveticus , Probiotics , Humans , Bifidobacterium , Lactobacillus acidophilus
4.
Microbiol Res ; 217: 60-68, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30384909

ABSTRACT

Many aspects of plant diseases caused by phytoplasmas are still unknown, as these pathogens are phloem restricted, uncultivable wall-less bacteria and must be studied always in association with their host. Phytoplasma transcripts are strongly underrepresented within host tissues and this poses problems for gene expression analyses. In this study, a procedure was established to infect the model plant Arabidopsis thaliana with the phytoplasma Flavescence dorée, a serious threat to European viticulture. Rates of phytoplasma infective insects and transmission efficiency to A. thaliana as well as pathogen loads were measured in different tissues of infected A. thaliana plants, and modification of phloem cell ultrastructure was observed in infected plant tissues at microscopic level. Moreover, a protocol for the application of laser microdissection to analyze plant and phytoplasma gene expression profiles in the specific colonized tissue was designed. The procedure allowed a good preservation of the plant tissue anatomy. Results showed that the extracted RNA was suitable for qualitative and quantitative RT-PCR, since both plant and pathogen transcripts, either abundant or rare ones, could be detected without any pre-amplification step. The combined use of laser microdissection approach and A. thaliana to study phytoplasmas opens the way to exploit biological, molecular and bioinformatic tools available for the model plant and to elucidate key pathways of the infection mechanisms of these important plant pathogen.


Subject(s)
Arabidopsis/genetics , Arabidopsis/microbiology , Host-Pathogen Interactions/genetics , Lasers , Microdissection/methods , Phytoplasma/genetics , Plant Diseases/microbiology , Transcriptome , Animals , Arabidopsis/ultrastructure , Arabidopsis Proteins/genetics , Bacterial Proteins/genetics , DNA, Bacterial/analysis , Endoplasmic Reticulum , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Genes, Plant/genetics , Insect Vectors/microbiology , Microscopy/methods , Phloem/microbiology , Phytoplasma/ultrastructure , Plant Leaves/microbiology , Plant Leaves/ultrastructure
5.
Infect Immun ; 86(5)2018 05.
Article in English | MEDLINE | ID: mdl-29531134

ABSTRACT

Phytoplasmas are plant-pathogenic bacteria transmitted by hemipteran insects. The leafhopper Euscelidius variegatus is a natural vector of chrysanthemum yellows phytoplasma (CYp) and a laboratory vector of flavescence dorée phytoplasma (FDp). The two phytoplasmas induce different effects on this species: CYp slightly improves whereas FDp negatively affects insect fitness. To investigate the molecular bases of these different responses, transcriptome sequencing (RNA-seq) analysis of E. variegatus infected with either CYp or FDp was performed. The sequencing provided the first de novo transcriptome assembly for a phytoplasma vector and a starting point for further analyses on differentially regulated genes, mainly related to immune system and energy metabolism. Insect phenoloxidase activity, immunocompetence, and body pigmentation were measured to investigate the immune response, while respiration and movement rates were quantified to confirm the effects on energy metabolism. The activation of the insect immune response upon infection with FDp, which is not naturally transmitted by E. variegatus, confirmed that this bacterium is mostly perceived as a potential pathogen. Conversely, the acquisition of CYp, which is naturally transmitted by E. variegatus, seems to increase the insect fitness by inducing a prompt response to stress. This long-term relationship is likely to improve survival and dispersal of the infected insect, thus enhancing the opportunity of phytoplasma transmission.


Subject(s)
Chrysanthemum/microbiology , Hemiptera/immunology , Hemiptera/microbiology , Insect Vectors/immunology , Insect Vectors/microbiology , Phytoplasma/immunology , Phytoplasma/pathogenicity , Animals , Host-Pathogen Interactions
6.
Planta ; 247(3): 573-585, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29124326

ABSTRACT

MAIN CONCLUSION: AM symbiosis did not strongly affect Arundo donax performances under salt stress, although differences in the plants inoculated with two different fungi were recorded. The mechanisms at the basis of the improved tolerance to abiotic stresses by arbuscular mycorrhizal (AM) fungi have been investigated mainly focusing on food crops. In this work, the potential impact of AM symbiosis on the performance of a bioenergy crop, Arundo donax, under saline conditions was considered. Specifically, we tried to understand whether AM symbiosis helps this fast-growing plant, often widespread in marginal soils, withstand salt. A combined approach, involving eco-physiological, morphometric and biochemical measurements, was used and the effects of two different AM fungal species (Funneliformis mosseae and Rhizophagus irregularis) were compared. Results indicate that potted A. donax plants do not suffer permanent damage induced by salt stress, but photosynthesis and growth are considerably reduced. Since A. donax is a high-yield biomass crop, reduction of biomass might be a serious agronomical problem in saline conditions. At least under the presently experienced growth conditions, and plant-AM combinations, the negative effect of salt on plant performance was not rescued by AM fungal colonization. However, some changes in plant metabolisms were observed following AM-inoculation, including a significant increase in proline accumulation and a trend toward higher isoprene emission and higher H2O2, especially in plants colonized by R. irregularis. This suggests that AM fungal symbiosis influences plant metabolism, and plant-AM fungus combination is an important factor for improving plant performance and productivity, in presence or absence of stress conditions.


Subject(s)
Mycorrhizae/physiology , Poaceae/physiology , Stress, Physiological , Biomass , Chlorophyll/physiology , Plant Leaves/chemistry , Plant Leaves/physiology , Plant Roots/microbiology , Plant Transpiration/physiology , Poaceae/microbiology , Salinity , Soil , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...