Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 221: 118787, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35841794

ABSTRACT

Lead is a chemical contaminant that threatens public health, and high levels of lead have been identified in drinking water at locations across the globe. Under-served populations that use private systems for drinking water supplies may be at an elevated level of risk because utilities and governing agencies are not responsible for ensuring that lead levels meet the Lead and Copper Rule at these systems. Predictive models that can be used by residents to assess water quality threats in their households can create awareness of water lead levels (WLLs). This research explores and compares the use of statistical models (i.e., Bayesian Belief classifiers) and machine learning models (i.e., ensemble of decision trees) for predicting WLLs. Models are developed using a dataset collected by the Virginia Household Water Quality Program (VAHWQP) at approximately 8000 households in Virginia during 2012-2017. The dataset reports laboratory-tested water quality parameters at households, location information, and household and plumbing characteristics, including observations of water odor, taste, discoloration. Some water quality parameters, such as pH, iron, and copper, can be measured at low resolution by residents using at-home water test kits and can be used to predict risk of WLLs. The use of at-home water quality test kits was simulated through the discretization of water quality parameter measurements to match the resolution of at-home water quality test kits and the introduction of error in water quality readings. Using this approach, this research demonstrates that low-resolution data collected by residents can be used as input for models to estimate WLLs. Model predictability was explored for a set of at-home water quality test kits that observe a variety of water quality parameters and report parameters at a range of resolutions. The effects of the timing of water sampling (e.g., first-draw vs. flushed samples) and error in kits on model error were tested through simulations. The prediction models developed through this research provide a set of tools for private well users to assess the risk of lead contamination. Models can be implemented as early warning systems in citizen science and online platforms to improve awareness of drinking water threats.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Bayes Theorem , Copper , Lead/analysis , Water Pollutants, Chemical/analysis , Water Quality , Water Supply
2.
Sustain Cities Soc ; 77: 103520, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34777984

ABSTRACT

During the coronavirus disease 2019 (COVID-19) pandemic, the daily pattern of activities changed dramatically for people across the globe, as they socially distanced and worked remotely. Changes in daily routines created changes in water consumption patterns. Significant changes in water demands can affect the operation of water distribution systems, resulting in new patterns of flow, with implications for water age, pressure, and energy consumption. This research develops a digital twin to couple Advanced Metering Infrastructure (AMI) data with a hydraulic model to assess impacts on infrastructure due to changes in water demands associated with the COVID-19 pandemic for a case study. Using 2019 and COVID-19 modeling scenarios, the hydraulic model was executed to evaluate changes to water quality based on water age, pressure across nodes in the network, and the energy required by the system to distribute potable water. A water supply interruption event was modeled as a water main break to assess network resiliency for 2019 and COVID-19 demands. A digital twin provides the capabilities to explore and visualize emerging consumption patterns and their effects on the functioning of water systems, providing valuable analyses for water utility managers and insight for optimizing infrastructure operations and planning for long-term impacts.

3.
J Water Resour Plan Manag ; 146(8): 1-23, 2020 Jun 13.
Article in English | MEDLINE | ID: mdl-33627936

ABSTRACT

Water distribution systems are vulnerable to hazards that threaten water delivery, water quality, and physical and cybernetic infrastructure. Water utilities and managers are responsible for assessing and preparing for these hazards, and researchers have developed a range of computational frameworks to explore and identify strategies for what-if scenarios. This manuscript conducts a review of the literature to report on the state of the art in modeling methodologies that have been developed to support the security of water distribution systems. First, the major activities outlined in the emergency management framework are reviewed; the activities include risk assessment, mitigation, emergency preparedness, response, and recovery. Simulation approaches and prototype software tools are reviewed that have been developed by government agencies and researchers for assessing and mitigating four threat modes, including contamination events, physical destruction, interconnected infrastructure cascading failures, and cybernetic attacks. Modeling tools are mapped to emergency management activities, and an analysis of the research is conducted to group studies based on methodologies that are used and developed to support emergency management activities. Recommendations are made for research needs that will contribute to the enhancement of the security of water distribution systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...