Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Molecules ; 28(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903441

ABSTRACT

Biomethane can be isolated from biogas through selective CO2 adsorption. Faujasite-type zeolites are promising adsorbents for CO2 separation due to their high CO2 adsorption capacity. While commonly inert binder materials are used to shape zeolite powders into the desired macroscopic format for application in an adsorption column, here we report the synthesis of Faujasite beads without the use of a binder and their application as CO2-adsorbents. Three types of binderless Faujasite beads (d = 0.4-0.8 mm) were synthesized using an anion-exchange resin hard template. All the prepared beads consisted mostly of small Faujasite crystals, as demonstrated by characterization with XRD and SEM, which are interconnected through a network of meso- and macropores (10-100 nm), yielding a hierarchically porous structure, as shown by N2 physisorption and SEM. The zeolitic beads showed high CO2 adsorption capacity (up to 4.3 mmol g-1 at 1 bar and 3.7 mmol g-1 at 0.4 bar) and CO2/CH4 selectivity (up to 19 at the partial pressures mimicking biogas, i.e., 0.4 bar CO2 and 0.6 bar CH4). Additionally, the synthesized beads have a stronger interaction with CO2 than the commercial zeolite powder (enthalpy of adsorption -45 kJ mol-1 compared to -37 kJ mol-1). Therefore, they are also suitable for CO2 adsorption from gas streams in which the CO2 concentration is relatively low, such as flue gas.

2.
Green Chem ; 25(4): 1658-1671, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36824603

ABSTRACT

In this work, we present a comprehensive study of the electrocatalytic reduction of fructose to sorbitol and mannitol, in a mild alkaline medium (pH = 11.3), with a Cu wire as the cathode. Particular attention was paid to the reaction mechanism, investigated by linear sweep voltammetry (LSV) and chronopotentiometry (CP) coupled with high-pressure liquid chromatography (HPLC). The initial results of our study showed that at the potential where the fructose reduction reaction (FRR) is achieved, competition with the hydrogen evolution reaction (HER) tends to occur, thus limiting the Faradaic efficiency towards the FRR. Moreover, products of chemical conversions were also observed in the liquid electrolyte, originating from the isomerisation of fructose to glucose and mannose and degradation reactions (C-C breaking). Through a thorough optimisation of the reaction parameters, the Faradaic efficiency could be remarkably improved, reaching values >40% and being sustained for 10 h of electrolysis at a current of i = -20 mA. More specifically, the minimisation of the undesired chemical side reactions was achieved by the careful control of the pH (11.3 ± 0.3) using a buffer electrolyte and a titration pump, thus limiting the isomerisation of fructose to glucose and mannose to <2% in 10 h. The electrochemical conversion was optimised via a tailored strategy involving a two-step potential cycling for re-activating the electrocatalyst surface, which allowed achieving 77% electrochemical conversion of fructose to sorbitol and mannitol in 10 h of electrolysis (sorbitol : mannitol = 0.43 : 0.57). This is the first time that the electrocatalytic FRR was achieved with such a high product yield and by using a non-noble metal-based cathode, thus opening up a novel, green route for the conversion of fructose into sorbitol and mannitol. This work also provides relevant, new insight into the crucial parameters that need to be taken into account to achieve the electrocatalytic reduction of saccharides, by gaining control of their complex chemistry in solution.

3.
Langmuir ; 38(1): 182-190, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34913697

ABSTRACT

Micrometer-sized double emulsions and antibubbles were produced and stabilized via the Pickering mechanism by colloidal interfacial layers of polymeric nanoparticles (NPs). Two types of nanoparticles, consisting either of polylactic acid (PLA) or polylactic-co-glycolic acid (PLGA), were synthesized by the antisolvent technique without requiring any surfactant. PLA nanoparticles were able to stabilize water-in-oil (W/O) emulsions only after tuning the hydrophobicity by means of a thermal treatment. A water-in-oil-in-water (W/O/W) emulsion was realized by emulsifying the previous W/O emulsion in a continuous water phase containing hydrophilic PLGA nanoparticles. Both inner and outer water phases contained a sugar capable of forming a glassy phase, while the oil was crystallizable upon freezing. Freeze drying the double emulsion allowed removing the oil and water and replacing them with air without losing the three-dimensional (3D) structure of the original emulsion owing to the sugar glassy phase. Reconstitution of the freeze-dried double emulsion in water yielded a dispersion of antibubbles, i.e., micrometric bubbles containing aqueous droplets, with the interfaces of the antibubbles being stabilized by a layer of adsorbed polymeric nanoparticles. Remarkably, it was possible to achieve controlled release of a flourescent probe (calcein) from the antibubbles through heating to 37 °C leading to bursting of the antibubbles.


Subject(s)
Nanoparticles , Emulsions , Glycolates , Polyesters
4.
Chem Commun (Camb) ; 56(95): 14992-14995, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33196068

ABSTRACT

We report a cost-effective, straightforward synthesis of a novel electrocatalyst for the reduction of CO2 to formate, which achieves nearly complete Faradaic efficiency (FE) at an overpotential (η) of 0.88 V under ambient conditions. The electrocatalyst was prepared using bismuth subsalicylate as precursor and consists of bismuth nanoparticles (Bi NPs) with an average diameter of 5.5 nm supported on activated carbon.

5.
ChemSusChem ; 12(16): 3856-3863, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31259474

ABSTRACT

The role of water as highly effective hydrogen-bond donor (HBD) for promoting the coupling reaction of CO2 with a variety of epoxides was demonstrated under very mild conditions (25-60 °C, 2-10 bar CO2 ). Water led to a dramatic increase in the cyclic carbonate yield when employed in combination with tetrabutylammonium iodide (Bu4 NI) whereas it had a detrimental effect with the corresponding bromide and chloride salts. The efficiency of water in promoting the activity of the organic halide was compared with three state-of-the-art hydrogen bond donors, that is, phenol, gallic acid and ascorbic acid. Although water required higher molar loadings compared to these organic hydrogen-bond donors to achieve a similar degree of conversion of CO2 and styrene oxide into the corresponding cyclic carbonate under the same, mild reaction conditions, its environmental friendliness and much lower cost make it a very attractive alternative as hydrogen-bond donor. The effect of different parameters such as the amount of water, CO2 pressure, reaction temperature, and nature of the organic halide used as catalyst was investigated by using a high-throughput reactor unit. The highest catalytic activity was achieved with either Bu4 NI or bis(triphenylphosphine)iminium iodide (PPNI): with both systems, the cyclic carbonate yield at 45 °C with different epoxide substrates could be increased by a factor of two or more by adding water as a promoter, retaining high selectivity. Water was an effective hydrogen-bond donor even at room temperature, allowing to reach 85 % conversion of propylene oxide with full selectivity towards propylene carbonate in combination with Bu4 NI (3 mol %). For the conversion of epoxides in which PPNI is poorly soluble, the addition of a cyclic carbonate as solvent allowed the formation of a homogeneous solution, leading to enhanced product yield.

6.
ChemSusChem ; 12(15): 3635-3641, 2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31038791

ABSTRACT

The development of new families of active and selective single-component catalysts based on earth-abundant metal is of interest from a sustainable chemistry perspective. In this context, anionic mono(formazanate) iron(II) complexes bearing labile halide ligands, which possess both Lewis acidic and nucleophilic functionalities, have been developed as novel single-component homogeneous catalysts for the reaction of CO2 with epoxides to produce cyclic carbonates. The influence of the halide ligand and the electronic properties of the formazanate ligand backbone on the catalytic activity are investigated by employing the iron(II) complexes with and without an additional nucleophile. Very high selectivity is achieved towards the formation of the cyclic carbonate products from various terminal and internal epoxides without the need of a cocatalyst.

7.
ACS Catal ; 9(11): 9953-9963, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-32953236

ABSTRACT

A series of heterogeneous catalysts consisting of highly dispersed Pt nanoparticles supported on nanosized ZrO2 (20 to 60 nm) was synthesized and investigated for the one-pot transfer hydrogenation between glycerol and cyclohexene to produce lactic acid and cyclohexane, without any additional H2. Different preparation methods were screened, by varying the calcination and reduction procedures with the purpose of optimizing the dispersion of Pt species (i.e., as single-atom sites or extra-fine Pt nanoparticles) on the ZrO2 support. The Pt/ZrO2 catalysts were characterized by means of transmission electron microscopy techniques (HAADF-STEM, TEM), elemental analysis (ICP-OES, EDX mapping), N2-physisorption, H2 temperature-programmed-reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). Based on this combination of techniques it was possible to correlate the temperature of the calcination and reduction treatments with the nature of the Pt species. The best catalyst consisted of subnanometer Pt clusters (<1 nm) and atomically dispersed Pt (as Pt2+ and Pt4+) on the ZrO2 support, which were converted into extra-fine Pt nanoparticles (average size = 1.4 nm) upon reduction. These nanoparticles acted as catalytic species for the transfer hydrogenation of glycerol with cyclohexene, which gave an unsurpassed 95% yield of lactic acid salt at 96% glycerol conversion (aqueous glycerol solution, NaOH as promoter, 160 °C, 4.5 h, at 20 bar N2). This is the highest yield and selectivity of lactic acid (salt) reported in the literature so far. Reusability experiments showed a partial and gradual loss of activity of the Pt/ZrO2 catalyst, which was attributed to the experimentally observed aggregation of Pt nanoparticles.

8.
ACS Sustain Chem Eng ; 6(8): 10923-10933, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30271693

ABSTRACT

Multifunctional catalytic systems consisting of physical mixtures of Au nanoparticles (2-3 nm) supported on metal oxides and Sn-MCM-41 nanoparticles (50-120 nm) were synthesized and investigated for the selective conversion of glycerol to methyl lactate. The Au catalyst promotes the oxidation of glycerol to trioses, whereas the solid acid Sn-MCM-41 catalyzes the rearrangement of the intermediate trioses to methyl lactate. Among the supported Au nanoparticles, Au/CuO led to the highest yield and selectivity toward methyl lactate, while the Sn-MCM-41 nanoparticles showed much better catalytic performance than a benchmark solid acid catalyst (USY zeolite). The activity of the multifunctional catalytic system was further optimized by tuning the calcination temperature, the gold loading in the Au/CuO catalyst, and the Au/Sn molar ratio, reaching 63% yield of methyl lactate (ML) at 95% glycerol conversion. This catalytic system also showed excellent reusability. The catalytic results were rationalized on the basis of a detailed characterization by means of TEM, N2-physisorption, UV-vis spectroscopy, and by FT-IR using probe molecules (CO and ethanol).

9.
Polymers (Basel) ; 10(10)2018 Sep 28.
Article in English | MEDLINE | ID: mdl-30961001

ABSTRACT

This study examines the preparation of electrically conductive polymer networks based on furan-functionalised polyketone (PK-Fu) doped with multi-walled carbon nanotubes (MWCNTs) and reversibly crosslinked with bis-maleimide (B-Ma) via Diels-Alder (DA) cycloaddition. Notably, the incorporation of 5 wt.% of MWCNTs results in an increased modulus of the material, and makes it thermally and electrically conductive. Analysis by X-ray photoelectron spectroscopy indicates that MWCNTs, due to their diene/dienophile character, covalently interact with the matrix via DA reaction, leading to effective interfacial adhesion between the components. Raman spectroscopy points to a more effective graphitic ordering of MWCNTs after reaction with PK-Fu and B-Ma. After crosslinking the obtained composite via the DA reaction, the softening point (tan(δ) in dynamic mechanical analysis measurements) increases up to 155 °C, as compared to the value of 130 °C for the PK-Fu crosslinked with B-Ma and that of 140 °C for the PK-Fu/B-Ma/MWCNT nanocomposite before resistive heating (responsible for crosslinking). After grinding the composite, compression moulding (150 °C/40 bar) activates the retro-DA process that disrupts the network, allowing it to be reshaped as a thermoplastic. A subsequent process of annealing via resistive heating demonstrates the possibility of reconnecting the decoupled DA linkages, thus providing the PK networks with the same thermal, mechanical, and electrical properties as the crosslinked pristine systems.

10.
RSC Adv ; 8(16): 8813-8827, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-35539860

ABSTRACT

Following current strong demands from, among others, paper, food and mining industries, a novel type of nanofiltration membrane was developed, which displays excellent performance in terms of selectivity/flux with a unique combination of chemical stability over the full (0-14) pH-range and thermal stability up to 120 °C. The membrane consists of polyvinylidene fluoride grafted with polystyrene sulfonic acid. The optimum membrane showed water permeances of 2.4 L h-1 m-2 bar-1 while retaining NaCl, MgSO4 and Rhodamine B (479 Da) for respectively ≈60%, ≈80% and >96%.

11.
ChemSusChem ; 10(6): 1283-1291, 2017 03 22.
Article in English | MEDLINE | ID: mdl-27991727

ABSTRACT

Metal-organic frameworks (MOFs) with accessible Lewis acid sites are finding increasing application in the field of heterogeneous catalysis. However, the structural instability of MOFs when they are exposed to high temperature and/or high pressure often limits their applicability. In this study, two strategies were applied to achieve a MOF catalyst with high stability, activity and selectivity in the reaction of CO2 with styrene oxide to produce styrene carbonate. In the first approach, a MOF with linkers with high connectivity as MIL-100(Cr) was studied, leading to promising activity and recyclability in consecutive catalytic runs without loss of activity. In the second strategy, a MOF with linkers with lower connectivity but with encapsulated Keggin phosphotungstic acid (MIL-101(Cr)[PTA]) was prepared. However, the activity of this catalyst decreased upon reuse as a consequence of deterioration of the MOF. Further investigations were dedicated to the enhancement of the catalytic performance of MIL-100 and included the variation of the metal centre as well as the type and loading of organic salt acting as nucleophile source. This allowed tuning the nature of the organic halide to the specific porous structure of MIL-100(Cr) to prevent diffusion limitations. The best catalytic performance was obtained for MIL-100(Cr) in combination with EMIMBr ionic liquid, which gave very high styrene carbonate yield (94 %) with complete selectivity after 18 h of reaction at mild temperature (60 °C).


Subject(s)
Carbon Dioxide/chemistry , Carbonates/chemistry , Organometallic Compounds/chemistry , Catalysis , Chromium/chemistry , Halogens/chemistry , Models, Molecular , Molecular Conformation , Styrene/chemistry
12.
ChemSusChem ; 8(6): 1034-42, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25688870

ABSTRACT

The atom-efficient reaction of CO2 with a variety of epoxides has been efficiently achieved employing iron pyridylamino-bis(phenolate) complexes as bifunctional catalysts. The addition of a Lewis base co-catalyst allowed significant reduction in the amount of iron complex needed to achieve high epoxide conversions. The possibility of controlling the selectivity of the reaction towards either cyclic carbonate or polycarbonate was evaluated. An efficient switch in selectivity could be achieved when cyclic epoxides such as cyclohexene oxide and the seldom explored 1,2-epoxy-4-vinylcyclohexane were used as substrates. The obtained poly(vinylcyclohexene carbonate) presents pending vinyl groups, which allowed post-synthetic cross-linking by reaction with 1,3-propanedithiol. The cross-linked polycarbonate displayed a substantial increase in the glass transition temperature and chemical resistance, thus opening new opportunities for the application of these green polymers.


Subject(s)
Carbon Dioxide/chemistry , Carbonates/chemistry , Ferric Compounds/chemistry , Polycarboxylate Cement/chemistry , Catalysis , Mechanical Phenomena , Temperature
13.
Chem Commun (Camb) ; 50(75): 11008-11, 2014 Sep 28.
Article in English | MEDLINE | ID: mdl-25096215

ABSTRACT

An octacarboxy-silsesquioxane was designed and synthesised through a multiple-step regioselective reaction. This novel hybrid inorganic-organic compound presents highly attractive features for application as a building block, as it has a robust, rigid structure and a high number of carboxylic coordination sites organised in a cubic symmetry.

14.
Angew Chem Int Ed Engl ; 53(6): 1585-9, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24453173

ABSTRACT

Gallium oxide nanorods with unprecedented small dimensions (20-80 nm length and 3-5 nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2 O2 , rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites.

15.
Phys Chem Chem Phys ; 15(16): 6107-12, 2013 Apr 28.
Article in English | MEDLINE | ID: mdl-23503337

ABSTRACT

Lithium ion batteries have conquered most of the portable electronics market and are now on the verge of deployment in large scale applications. To be competitive in the automotive and stationary sectors, however, they must be improved in the fields of safety and energy density (W h L(-1)). Solid-state batteries with a ceramic electrolyte offer the necessary advantages to significantly improve the current state-of-the-art technology. The major limit towards realizing a practical solid-state lithium-ion battery lies in the lack of viable ceramic ionic conductors. Only a few candidate materials are available, each carrying a difficult balance between advantages and drawbacks. Here we introduce a new class of possible solid-state lithium-ion conductors with the spinel structure. Such compounds could be coupled with spinel-type electrode materials to obtain a "lattice matching" solid device where low interfacial resistance could be achieved. Powders were prepared by wet chemistry, their structure was studied by means of diffraction techniques and magic angle spinning NMR, and Li(+) self-diffusion was estimated by static NMR line shape measurements. Profound differences in the Li(+) diffusion properties were observed depending on the composition, lithium content and cationic distribution. Local Li(+) hopping in the spinel materials is accompanied by a low activation energy of circa 0.35 eV being comparable with that of, e.g., LLZO-type garnets, which represent the current benchmark in this field. We propose these novel materials as a building block for a lattice-matching all-spinel solid-state battery with low interfacial resistance.

16.
J Am Chem Soc ; 134(24): 10089-101, 2012 Jun 20.
Article in English | MEDLINE | ID: mdl-22550936

ABSTRACT

A novel catalyst design for the conversion of mono- and disaccharides to lactic acid and its alkyl esters was developed. The design uses a mesoporous silica, here represented by MCM-41, which is filled with a polyaromatic to graphite-like carbon network. The particular structure of the carbon-silica composite allows the accommodation of a broad variety of catalytically active functions, useful to attain cascade reactions, in a readily tunable pore texture. The significance of a joint action of Lewis and weak Brønsted acid sites was studied here to realize fast and selective sugar conversion. Lewis acidity is provided by grafting the silica component with Sn(IV), while weak Brønsted acidity originates from oxygen-containing functional groups in the carbon part. The weak Brønsted acid content was varied by changing the amount of carbon loading, the pyrolysis temperature, and the post-treatment procedure. As both catalytic functions can be tuned independently, their individual role and optimal balance can be searched for. It was thus demonstrated for the first time that the presence of weak Brønsted acid sites is crucial in accelerating the rate-determining (dehydration) reaction, that is, the first step in the reaction network from triose to lactate. Composite catalysts with well-balanced Lewis/Brønsted acidity are able to convert the trioses, glyceraldehyde and dihydroxyacetone, quantitatively into ethyl lactate in ethanol with an order of magnitude higher reaction rate when compared to the Sn grafted MCM-41 reference catalyst. Interestingly, the ability to tailor the pore architecture further allows the synthesis of a variety of amphiphilic alkyl lactates from trioses and long chain alcohols in moderate to high yields. Finally, direct lactate formation from hexoses, glucose and fructose, and disaccharides composed thereof, sucrose, was also attempted. For instance, conversion of sucrose with the bifunctional composite catalyst yields 45% methyl lactate in methanol at slightly elevated reaction temperature. The hybrid catalyst proved to be recyclable in various successive runs when used in alcohol solvent.


Subject(s)
Carbon/chemistry , Disaccharides/chemistry , Lactates/chemical synthesis , Monosaccharides/chemistry , Silicon Dioxide/chemistry , Alcohols/chemistry , Catalysis , Lactates/chemistry , Lactic Acid/chemical synthesis , Lactic Acid/chemistry , Porosity
17.
Comb Chem High Throughput Screen ; 15(2): 140-51, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-21902643

ABSTRACT

Transition-metal-free oxides were studied as heterogeneous catalysts for the sustainable epoxidation of alkenes with aqueous H2O2 by means of high throughput experimentation (HTE) techniques. A full-factorial HTE approach was applied in the various stages of the development of the catalysts: the synthesis of the materials, their screening as heterogeneous catalysts in liquid-phase epoxidation and the optimisation of the reaction conditions. Initially, the chemical composition of transition-metal-free oxides was screened, leading to the discovery of gallium oxide as a novel, active and selective epoxidation catalyst. On the basis of these results, the research line was continued with the study of structured porous aluminosilicates, gallosilicates and silica-gallia composites. In general, the gallium-based materials showed the best catalytic performances. This family of materials represents a promising class of heterogeneous catalysts for the sustainable epoxidation of alkenes and offers a valid alternative to the transition-metal heterogeneous catalysts commonly used in epoxidation. High throughput experimentation played an important role in promoting the development of these catalytic systems.


Subject(s)
Alkenes/chemistry , Epoxy Compounds/chemical synthesis , Gallium/chemistry , High-Throughput Screening Assays , Catalysis , Epoxy Compounds/chemistry , Hydrogen Peroxide/chemistry , Water/chemistry
18.
ChemSusChem ; 4(12): 1830-7, 2011 Dec 16.
Article in English | MEDLINE | ID: mdl-22110020

ABSTRACT

Multilayered, covalently supported ionic liquid phase (mlc-SILP) materials were synthesized by using a new approach based on the grafting of bis-vinylimidazolium salts on different types of silica or polymeric supports. The obtained materials were characterized and tested as catalysts in the reaction of supercritical carbon dioxide with various epoxides to produce cyclic carbonates. The material prepared by supporting a bromide bis-imidazolium salt on the ordered mesoporous silica SBA-15 was identified as the most active catalyst for the synthesis of cyclic carbonates and displayed improved productivity compared with known supported ionic liquid catalysts. The catalyst retained its high activity upon reuse in consecutive catalytic runs. This is the first report of the application of mlc-SILP materials as catalysts in a reaction for the fixation of carbon dioxide. Rapid, parallel screening and comparison of the catalysts was performed by means of high-throughput experimentation.


Subject(s)
Carbon Dioxide/chemistry , Imidazoles/chemistry , Ionic Liquids/chemistry , Vinyl Compounds/chemistry , Carbonates/chemistry , Catalysis , Epoxy Compounds/chemistry
19.
ChemSusChem ; 4(10): 1457-63, 2011 Oct 17.
Article in English | MEDLINE | ID: mdl-21598408

ABSTRACT

Titania/silica composites with different Ti/Si ratios are synthesized via a nonconventional synthesis route. The synthesis involves non-aqueous reaction of metal alkoxides and formic acid at 75 °C in supercritical carbon dioxide. The as-prepared composite materials contain nanometer-sized anatase crystallites and amorphous silica. Large specific surface areas are obtained. The composites are evaluated in the photocatalytic degradation of phenol in aqueous medium, and in the elimination of acetaldehyde from air. The highest photocatalytic activity in both processes is achieved with a composite containing 40 wt % TiO2.


Subject(s)
Carbon Dioxide/chemistry , Phenol/chemistry , Silicon Dioxide/chemistry , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Environmental Restoration and Remediation/methods , Formates/chemistry , Microscopy, Electron, Transmission , Oxides/chemistry , Phenol/radiation effects , Photolysis , Powder Diffraction , Spectrometry, X-Ray Emission , Spectrophotometry, Infrared , Ultraviolet Rays , Water Pollutants, Chemical/radiation effects
20.
Chemistry ; 16(45): 13509-18, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-20931566

ABSTRACT

Porous titanosilicate beads with a diameter of 0.5-1.5 mm (TiSil-HPB-60) were synthesized from a preformed titanosilicate solution with a porous anion-exchange resin as template. The bead format of this material enables its straightforward separation from the reaction mixture in its application as a liquid-phase heterogeneous catalyst. The material displays hierarchical porosity (micro/mesopores) and incipient TS-1 structure building units. The titanium species are predominantly located in tetrahedral framework positions. TiSil-HPB-60 is a highly active catalyst for the epoxidation of cyclohexene with t-butyl hydroperoxide (TBHP) and aqueous H(2)O(2). With both oxidants, TiSil-HPB-60 gave higher epoxide yields than Ti-MCM-41 and TS-1. The improved catalytic performance of TiSil-HPB-60 is mainly ascribed to the large mesopores favoring the diffusion of reagents and products to and from the titanium active sites. The epoxide yield and selectivity could be further improved by silylation of the titanosilicate beads. Importantly, TiSil-HPB-60 is a stable catalyst immune to titanium leaching, and can be easily recovered and reused in successive catalytic cycles without significant loss of activity. Moreover, TiSil-HPB-60 is active and selective in the epoxidation of a wide range of bulky alkenes.

SELECTION OF CITATIONS
SEARCH DETAIL
...