Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Syst Biol ; 14(4): e7390, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29618636

ABSTRACT

Populations of isogenic cells often respond coherently to signals, despite differences in protein abundance and cell state. Previously, we uncovered processes in the Saccharomyces cerevisiae pheromone response system (PRS) that reduced cell-to-cell variability in signal strength and cellular response. Here, we screened 1,141 non-essential genes to identify 50 "variability genes". Most had distinct, separable effects on strength and variability of the PRS, defining these quantities as genetically distinct "axes" of system behavior. Three genes affected cytoplasmic microtubule function: BIM1, GIM2, and GIM4 We used genetic and chemical perturbations to show that, without microtubules, PRS output is reduced but variability is unaffected, while, when microtubules are present but their function is perturbed, output is sometimes lowered, but its variability is always high. The increased variability caused by microtubule perturbations required the PRS MAP kinase Fus3 and a process at or upstream of Ste5, the membrane-localized scaffold to which Fus3 must bind to be activated. Visualization of Ste5 localization dynamics demonstrated that perturbing microtubules destabilized Ste5 at the membrane signaling site. The fact that such microtubule perturbations cause aberrant fate and polarity decisions in mammals suggests that microtubule-dependent signal stabilization might also operate throughout metazoans.


Subject(s)
MAP Kinase Signaling System/genetics , Microtubule Proteins/genetics , Microtubules/genetics , Single-Cell Analysis , Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Proteins/genetics , Microtubules/metabolism , Mitogen-Activated Protein Kinases/genetics , Pheromones/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction/genetics
2.
Front Genet ; 6: 346, 2015.
Article in English | MEDLINE | ID: mdl-26734059

ABSTRACT

The yeast two-hybrid (Y2H) system exploits host cell genetics in order to display binary protein-protein interactions (PPIs) via defined and selectable phenotypes. Numerous improvements have been made to this method, adapting the screening principle for diverse applications, including drug discovery and the scale-up for proteome wide interaction screens in human and other organisms. Here we discuss a systematic workflow and analysis scheme for screening data generated by Y2H and related assays that includes high-throughput selection procedures, readout of comprehensive results via next-generation sequencing (NGS), and the interpretation of interaction data via quantitative statistics. The novel assays and tools will serve the broader scientific community to harness the power of NGS technology to address PPI networks in health and disease. We discuss examples of how this next-generation platform can be applied to address specific questions in diverse fields of biology and medicine.

3.
Appl Environ Microbiol ; 79(24): 7569-82, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24038690

ABSTRACT

Organic acids derived from engineered microbes can replace fossil-derived chemicals in many applications. Fungal hosts are preferred for organic acid production because they tolerate lignocellulosic hydrolysates and low pH, allowing economic production and recovery of the free acid. However, cell death caused by cytosolic acidification constrains productivity. Cytosolic acidification affects cells asynchronously, suggesting that there is an underlying cell-to-cell heterogeneity in acid productivity and/or in resistance to toxicity. We used fluorescence microscopy to investigate the relationship between enzyme concentration, cytosolic pH, and viability at the single-cell level in Saccharomyces cerevisiae engineered to synthesize xylonic acid. We found that cultures producing xylonic acid accumulate cells with cytosolic pH below 5 (referred to here as "acidified"). Using live-cell time courses, we found that the probability of acidification was related to the initial levels of xylose dehydrogenase and sharply increased from 0.2 to 0.8 with just a 60% increase in enzyme abundance (Hill coefficient, >6). This "switch-like" relationship likely results from an enzyme level threshold above which the produced acid overwhelms the cell's pH buffering capacity. Consistent with this hypothesis, we showed that expression of xylose dehydrogenase from a chromosomal locus yields ∼20 times fewer acidified cells and ∼2-fold more xylonic acid relative to expression of the enzyme from a plasmid with variable copy number. These results suggest that strategies that further reduce cell-to-cell heterogeneity in enzyme levels could result in additional gains in xylonic acid productivity. Our results demonstrate a generalizable approach that takes advantage of the cell-to-cell variation of a clonal population to uncover causal relationships in the toxicity of engineered pathways.


Subject(s)
Carboxylic Acids/metabolism , Carboxylic Acids/toxicity , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism , Carbohydrate Dehydrogenases/metabolism , Cytosol/chemistry , Hydrogen-Ion Concentration , Microbial Viability/drug effects , Microscopy, Fluorescence , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/drug effects
4.
Proc Natl Acad Sci U S A ; 109(10): 3874-8, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-22355134

ABSTRACT

Organismal fitness depends on the ability of gene networks to function robustly in the face of environmental and genetic perturbations. Understanding the mechanisms of this stability is one of the key aims of modern systems biology. Dissecting the basis of robustness to mutation has proven a particular challenge, with most experimental models relying on artificial DNA sequence variants engineered in the laboratory. In this work, we hypothesized that negative regulatory feedback could stabilize gene expression against the disruptions that arise from natural genetic variation. We screened yeast transcription factors for feedback and used the results to establish ROX1 (Repressor of hypOXia) as a model system for the study of feedback in circuit behaviors and its impact across genetically heterogeneous populations. Mutagenesis experiments revealed the mechanism of Rox1 as a direct transcriptional repressor at its own gene, enabling a regulatory program of rapid induction during environmental change that reached a plateau of moderate steady-state expression. Additionally, in a given environmental condition, Rox1 levels varied widely across genetically distinct strains; the ROX1 feedback loop regulated this variation, in that the range of expression levels across genetic backgrounds showed greater spread in ROX1 feedback mutants than among strains with the ROX1 feedback loop intact. Our findings indicate that the ROX1 feedback circuit is tuned to respond to perturbations arising from natural genetic variation in addition to its role in induction behavior. We suggest that regulatory feedback may be an important element of the network architectures that confer mutational robustness across biology.


Subject(s)
DNA Mutational Analysis , Repressor Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Computational Biology/methods , Flow Cytometry , Genes, Fungal , Genetic Variation , Genomics , Green Fluorescent Proteins/metabolism , Hypoxia , Microscopy, Fluorescence/methods , Models, Genetic , Open Reading Frames , Saccharomyces cerevisiae/metabolism , Sequence Analysis, DNA , Transcription Factors/metabolism
5.
Nature ; 456(7223): 755-61, 2008 Dec 11.
Article in English | MEDLINE | ID: mdl-19079053

ABSTRACT

Haploid Saccharomyces cerevisiae yeast cells use a prototypic cell signalling system to transmit information about the extracellular concentration of mating pheromone secreted by potential mating partners. The ability of cells to respond distinguishably to different pheromone concentrations depends on how much information about pheromone concentration the system can transmit. Here we show that the mitogen-activated protein kinase Fus3 mediates fast-acting negative feedback that adjusts the dose response of the downstream system response to match the dose response of receptor-ligand binding. This 'dose-response alignment', defined by a linear relationship between receptor occupancy and downstream response, can improve the fidelity of information transmission by making downstream responses corresponding to different receptor occupancies more distinguishable and reducing amplification of stochastic noise during signal transmission. We also show that one target of the feedback is a previously uncharacterized signal-promoting function of the regulator of G-protein signalling protein Sst2. Our work suggests that negative feedback is a general mechanism used in signalling systems to align dose responses and thereby increase the fidelity of information transmission.


Subject(s)
Feedback, Physiological/physiology , Mitogen-Activated Protein Kinases/metabolism , Pheromones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/physiology , Signal Transduction , Dose-Response Relationship, Drug , GTPase-Activating Proteins/metabolism , Pheromones/pharmacology , Protein Binding , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Signal Transduction/drug effects
6.
Nature ; 437(7059): 699-706, 2005 Sep 29.
Article in English | MEDLINE | ID: mdl-16170311

ABSTRACT

Here we studied the quantitative behaviour and cell-to-cell variability of a prototypical eukaryotic cell-fate decision system, the mating pheromone response pathway in yeast. We dissected and measured sources of variation in system output, analysing thousands of individual, genetically identical cells. Only a small proportion of total cell-to-cell variation is caused by random fluctuations in gene transcription and translation during the response ('expression noise'). Instead, variation is dominated by differences in the capacity of individual cells to transmit signals through the pathway ('pathway capacity') and to express proteins from genes ('expression capacity'). Cells with high expression capacity express proteins at a higher rate and increase in volume more rapidly. Our results identify two mechanisms that regulate cell-to-cell variation in pathway capacity. First, the MAP kinase Fus3 suppresses variation at high pheromone levels, while the MAP kinase Kss1 enhances variation at low pheromone levels. Second, pathway capacity and expression capacity are negatively correlated, suggesting a compensatory mechanism that allows cells to respond more precisely to pheromone in the presence of a large variation in expression capacity.


Subject(s)
Cell Lineage , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Signal Transduction , CDC28 Protein Kinase, S cerevisiae/metabolism , Cell Cycle/physiology , Cell Lineage/drug effects , Gene Expression Regulation, Fungal/drug effects , Mating Factor , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Models, Biological , Peptides/pharmacology , Pheromones/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction/drug effects , Stochastic Processes
7.
Biochem Biophys Res Commun ; 295(5): 1077-84, 2002 Aug 02.
Article in English | MEDLINE | ID: mdl-12135604

ABSTRACT

Hepatocytes (Heps) and sinusoidal endothelial cells (SECs) perform different roles in normal and pathological liver functions through the differential expression of fibronectin (FN) polypeptides. Nonetheless, the molecular basis underlying cell-type specific FN expression remains unknown. Using liver cell isolation techniques followed by short-term primary culture and transient transfection, here, we compare the transcriptional regulation of the FN promoter in Heps and SEC in conditions that closely resemble in vivo physiology. Transfection experiments allowed us to reveal cell-type specific regulatory elements operating through the proximal regions of the FN promoter. To investigate this further, we examined the occupation patterns of key elements of the FN promoter such as the -170 CRE and -150 CCAAT sites. Transcriptional activity of mutagenised promoter constructs confirmed that in Heps, these two sites behave as a composite element critical for normal promoter activity. In addition, DNA-binding experiments demonstrate that the -170 CRE element displays a clear cell-type specific occupation with binding activities for ATF-2 and ATF-3 being specific to Heps. These results establish the starting point to investigate the molecular basis of changes in transcriptional regulation of the FN gene involved in liver pathology.


Subject(s)
Endothelium/physiology , Fibronectins/genetics , Hepatocytes/physiology , Promoter Regions, Genetic/physiology , Animals , CCAAT-Binding Factor/metabolism , Enhancer Elements, Genetic/physiology , Fibronectins/metabolism , Gene Expression Regulation , Liver/cytology , Male , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...