Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 8(9)2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30213086

ABSTRACT

Iron oxide films epitaxially grown on close-packed metal single crystal substrates exhibit nearly-perfect structural order, high catalytic activity (FeO) and room-temperature magnetism (Fe3O4). However, the morphology of the films, especially in the ultrathin regime, can be significantly influenced by the crystalline structure of the used support. This work reports an ultra-high vacuum (UHV) low energy electron/synchrotron light-based X-ray photoemission electron microscopy (LEEM/XPEEM) and electron diffraction (µLEED) study of the growth of FeO and Fe3O4 on two closed-packed metal single crystal surfaces: Pt(111) and Ru(0001). The results reveal the influence of the mutual orientation of adjacent substrate terraces on the morphology of iron oxide films epitaxially grown on top of them. On fcc Pt(111), which has the same mutual orientation of adjacent monoatomic terraces, FeO(111) grows with the same in-plane orientation on all substrate terraces. For Fe3O4(111), one or two orientations are observed depending on the growth conditions. On hcp Ru(0001), the adjacent terraces of which are 'rotated' by 180° with respect to each other, the in-plane orientation of initial FeO(111) and Fe3O4(111) crystallites is determined by the orientation of the substrate terrace on which they nucleated. The adaptation of three-fold symmetric iron oxides to three-fold symmetric substrate terraces leads to natural structuring of iron oxide films, i.e., the formation of patch-like magnetite layers on Pt(111) and stripe-like FeO and Fe3O4 structures on Ru(0001).

2.
J Am Chem Soc ; 140(19): 6164-6168, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29688718

ABSTRACT

We present a new polymorph of the two-dimensional (2D) silica film with a characteristic 'zigzag' line structure and a rectangular unit cell which forms on a Ru(0001) metal substrate. This new silica polymorph may allow for important insights into growth modes and transformations of 2D silica films as a model system for the study of glass transitions. Based on scanning tunneling microscopy, low energy electron diffraction, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy measurements on the one hand, and density functional theory calculations on the other, a structural model for the 'zigzag' polymorph is proposed. In comparison to established monolayer and bilayer silica, this 'zigzag' structure system has intermediate characteristics in terms of coupling to the substrate and stoichiometry. The silica 'zigzag' phase is transformed upon reoxidation at higher annealing temperature into a SiO2 silica bilayer film which is chemically decoupled from the substrate.

3.
ACS Nano ; 11(2): 1683-1688, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28182399

ABSTRACT

We develop a method for patterning a buried two-dimensional electron gas (2DEG) in silicon using low kinetic energy electron stimulated desorption (LEESD) of a monohydride resist mask. A buried 2DEG forms as a result of placing a dense and narrow profile of phosphorus dopants beneath the silicon surface; a so-called δ-layer. Such 2D dopant profiles have previously been studied theoretically, and by angle-resolved photoemission spectroscopy, and have been shown to host a 2DEG with properties desirable for atomic-scale devices and quantum computation applications. Here we outline a patterning method based on low kinetic energy electron beam lithography, combined with in situ characterization, and demonstrate the formation of patterned features with dopant concentrations sufficient to create localized 2DEG states.

4.
ACS Appl Mater Interfaces ; 9(9): 8384-8392, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28218510

ABSTRACT

The novel organic semiconductor dinaphthothienothiophene (DNTT) has gained considerable interest because its large charge carrier mobility and distinct chemical robustness enable the fabrication of organic field effect transistors with remarkable long-term stability under ambient conditions. Structural aspects of DNTT films and their control, however, remain so far largely unexplored. Interestingly, the crystalline structure of DNTT is rather similar to that of the prototypical pentacene, for which the molecular orientation in crystalline thin films can be controlled by means of interface-mediated growth. Combining atomic force microscopy, near-edge X-ray absorption fine structure, photoelectron emission microscopy, and X-ray diffraction, we compare substrate-mediated control of molecular orientation, morphology, and wetting behavior of DNTT films on the prototypical substrates SiO2 and graphene as well as technologically relevant dielectric surfaces (SiO2 and metal oxides that were pretreated with self-assembled monolayers (SAMs)). We found an immediate three-dimensional growth on graphene substrates, while an interfacial wetting layer is formed on the other substrates. Rather surprisingly, we observe distinct temporal changes of DNTT thin films on SiO2 and the SAM-treated dielectric substrates, which exhibit a pronounced dewetting and island formation on time scales of minutes to hours, even under ambient conditions, leading to a breakup of the initially closed wetting layer. These findings are unexpected in view of the reported long-time stability of DNTT-based devices. Therefore, their future consideration is expected to enable the further improvement of such applications, especially since these structural modifications are equivalently observed also on the SAM-treated dielectric surfaces, which are commonly used in device processing.

SELECTION OF CITATIONS
SEARCH DETAIL
...