Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Case Rep Ophthalmol ; 10(2): 244-255, 2019.
Article in English | MEDLINE | ID: mdl-31692577

ABSTRACT

INTRODUCTION: Autologous serum eye drops (ASED) are used in the treatment of most severe stages of dry eye. Once introduced, it is currently considered impossible to return to other lubricating eye drops or other commercially available therapeutic regimen. MATERIALS AND METHODS: In a randomized study, non-preserved high-molecular-weight hyaluronic acid eye drops were offered as an alternative to 11 patients using autologous serum treatment for at least 3 months. The control group (n = 5) continued their treatment with ASED. The verum group (n = 6) used very-high-molecular-weight hyaluronic eye drops (Comfort Shield®) instead of the ASED. RESULTS: From four of initially six patients in the verum group that finished the study, 2 (50%) preferred to stay with the very-high-molecular-weight hyaluronic acid eye drops beyond the trial period, the other two returned to the earlier therapy with ASED. The control group continued their treatment as before and finished the study after 8 weeks. CONCLUSION: For the first time, artificial eye drops, i.e., high-molecular-weight hyaluronic acid eye drops, offered an acceptable alternative to ASED. Some patients perceived these drops as even better than the patient's own serum. This is the first evidence that optimization of the molecular structure of hyaluronic acid can be used to create eye drops that are perceived to be better than other tested tear substitutes and even patients' own serum. This offers a new treatment perspective for patients with very severe dry eye disease.

2.
J Diabetes Res ; 2018: 5910639, 2018.
Article in English | MEDLINE | ID: mdl-30525053

ABSTRACT

INTRODUCTION: Diabetic neuroosteoarthropathy (DNOAP) early symptoms are unspecific, mimicking general infectious symptoms and rendering a diagnosis challenging. Consequently, unfavourable outcomes occur frequently, with recurrent foot ulceration, infectious complications, and eventually amputation. Corneal confocal microscopy (CCM) of the subbasal nerve plexus (SNP) is used to detect early peripheral neuropathy in diabetic patients without diabetic retinopathy. This pilot study was designed to determine if specific SNP changes manifest in severe DNOAP in comparison to a healthy control group. METHODS: This pilot study utilized a matched-pair analysis to investigate SNP changes by in vivo CCM for 26 patients (mean patient age 63.7 years, range 27 to 78) with severe DNOAP defined by condition after the need for reconstructive foot surgery (n = 13) and a healthy control group (n = 13). Corneal nerve fibre length (CNFL), nerve fibre density (CNFD), nerve branch density (CNBD), average weighted corneal nerve fibre thickness (CNFTh), nerve connecting points (CNCP), and average weighted corneal nerve fibre tortuosity (CNFTo) were assessed as well as the general clinical status, diabetic status, and ophthalmologic basic criteria. RESULTS: In vivo CCM revealed significantly reduced SNP parameters in the DNOAP group for CNFL (p = 0.010), CNFD (p = 0.037), CNBD (p = 0.049), and CNCP (p = 0.012) when compared to the healthy control group. Six patients (46%) of the DNOAP group suffered from diabetic retinopathy and none of the control group. CONCLUSIONS: This pilot study revealed a rarefication of SNP in all measured parameters in patients with severe DNOAP. We see a potential value of CCM providing a SNP-based biomarker for early stages of DNOAP prior to the development of any foot deformities that needs to be evaluated in further studies. This trial is registered with German Clinical Trials Register (DKRS) DRKS00007537.


Subject(s)
Cornea/diagnostic imaging , Cornea/innervation , Diabetic Foot/diagnostic imaging , Diabetic Neuropathies/diagnostic imaging , Adult , Aged , Arthropathy, Neurogenic/diagnostic imaging , Case-Control Studies , Diabetic Retinopathy/diagnostic imaging , Female , Foot Deformities/diagnostic imaging , Humans , Male , Microscopy, Confocal , Middle Aged , Nerve Fibers/pathology , Pilot Projects
3.
Sci Rep ; 8(1): 7468, 2018 05 10.
Article in English | MEDLINE | ID: mdl-29749384

ABSTRACT

The capability of corneal confocal microscopy (CCM) to acquire high-resolution in vivo images of the densely innervated human cornea has gained considerable interest in using this non-invasive technique as an objective diagnostic tool for staging peripheral neuropathies. Morphological alterations of the corneal subbasal nerve plexus (SNP) assessed by CCM have been shown to correlate well with the progression of neuropathic diseases and even predict future-incident neuropathy. Since the field of view of single CCM images is insufficient for reliable characterisation of nerve morphology, several image mosaicking techniques have been developed to facilitate the assessment of the SNP in large-area visualisations. Due to the limited depth of field of confocal microscopy, these approaches are highly sensitive to small deviations of the focus plane from the SNP layer. Our contribution proposes a new automated solution, combining guided eye movements for rapid expansion of the acquired SNP area and axial focus plane oscillations to guarantee complete imaging of the SNP. We present results of a feasibility study using the proposed setup to evaluate different oscillation settings. By comparing different image selection approaches, we show that automatic tissue classification algorithms are essential to create high-quality mosaic images from the acquired 3D datasets.


Subject(s)
Cornea/innervation , Microscopy, Confocal/instrumentation , Nerve Fibers/ultrastructure , Equipment Design , Humans , Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Microscopy, Confocal/methods
4.
Sci Rep ; 8(1): 14, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311586

ABSTRACT

Optical coherence tomography (OCT) of the retina and corneal confocal laser scanning microscopy (CLSM) of the subbasal nerve plexus (SBP) are noninvasive techniques for quantification of the ocular neurodegenerative changes in individuals with type 1 diabetes mellitus (T1DM). In adult T1DM patients these changes are hardly related to T1DM only. Instead, ageing and/or lifestyle associated comorbidities have to be considered as putative confounding variables. Therefore, we investigated pediatric T1DM patients (n = 28; 14.2 ± 2.51 y; duration of disease: 5.39 ± 4.16 y) without clinical signs of diabetic retina disease, neuropathy, vasculopathy or nephropathy and compared our findings with those obtained in healthy controls (n = 46; 14.8 ± 1.89 y). The SBP was characterized by the averaged length, thickness, and tortuosity of nerve fibers as well as the number of branching and connecting points. OCT was used to determine the total thickness of the retina (ALL) and the thickness of each retinal layer. Both methods revealed signs of early neurodegenerative changes, e.g. thinning of distinct retinal layers at the pericentral ring and shortening of corneal nerve fibers that are already present in pediatric T1DM patients. Standardization of instruments and algorithms are urgently required to enable uniform comparison between different groups and define normative values to introduce in the clinical setting.


Subject(s)
Cornea/innervation , Cornea/pathology , Diabetes Mellitus, Type 1/complications , Diabetic Retinopathy/etiology , Diabetic Retinopathy/pathology , Retina/pathology , Adolescent , Case-Control Studies , Child , Diabetic Retinopathy/diagnostic imaging , Female , Humans , Male , Microscopy, Confocal , Tomography, Optical Coherence
5.
PLoS One ; 12(3): e0173832, 2017.
Article in English | MEDLINE | ID: mdl-28296936

ABSTRACT

Corneal confocal microscopy (CCM) has revealed reduced corneal nerve fiber (CNF) length and density (CNFL, CNFD) in patients with diabetes, but the spatial pattern of CNF loss has not been studied. We aimed to determine whether spatial analysis of the distribution of corneal nerve branching points (CNBPs) may contribute to improving the detection of early CNF loss. We hypothesized that early CNF decline follows a clustered rather than random distribution pattern of CNBPs. CCM, nerve conduction studies (NCS), and quantitative sensory testing (QST) were performed in a cross-sectional study including 86 patients recently diagnosed with type 2 diabetes and 47 control subjects. In addition to CNFL, CNFD, and branch density (CNBD), CNBPs were analyzed using spatial point pattern analysis (SPPA) including 10 indices and functional statistics. Compared to controls, patients with diabetes showed lower CNBP density and higher nearest neighbor distances, and all SPPA parameters indicated increased clustering of CNBPs (all P<0.05). SPPA parameters were abnormally increased >97.5th percentile of controls in up to 23.5% of patients. When combining an individual SPPA parameter with CNFL, ≥1 of 2 indices were >99th or <1st percentile of controls in 28.6% of patients compared to 2.1% of controls, while for the conventional CNFL/CNFD/CNBD combination the corresponding rates were 16.3% vs 2.1%. SPPA parameters correlated with CNFL and several NCS and QST indices in the controls (all P<0.001), whereas in patients with diabetes these correlations were markedly weaker or lost. In conclusion, SPPA reveals increased clustering of early CNF loss and substantially improves its detection when combined with a conventional CCM measure in patients with recently diagnosed type 2 diabetes.


Subject(s)
Cornea/physiopathology , Diabetes Mellitus, Type 2/physiopathology , Nerve Fibers/physiology , Adult , Aged , Female , Humans , Male , Middle Aged
6.
Curr Eye Res ; 42(4): 549-556, 2017 04.
Article in English | MEDLINE | ID: mdl-27767360

ABSTRACT

Purpose/Aim of the study: A recently proposed technique enables the generation of continuously increasing mosaic images of the corneal sub-basal nerve plexus (SNP) using in vivo corneal confocal microscopy (CCM). The aim of the present study was to investigate the progression of the corneal nerve fiber length (CNFL) measured in the growing mosaic images with regard to their increasing area. MATERIALS AND METHODS: Five large datasets from three healthy volunteers were examined using the proposed CCM technique. Intermediate mosaic images were created and assessed for CNFL. RESULTS: The measured CNFL progression shows both over- and underestimation of the CNFL for small observed areas. Increasing the mosaic image area stabilizes the CNFL values and reduces the moving variance in all five datasets. The relative deviation of means from values of first and second examination of two of the subjects shows high differences for an observed area of <1.5 mm2. CONCLUSIONS: The present examination provides two measures to quantify different area-dependent aspects of the CNFL measured in an expanding mosaic image. The moving variance measures how stable the CNFL can be considered at a certain mosaic size. The relative deviation of means from two repeated CCM examinations on the other hand gives some indication on the level of reliability that can be expected from the measured CNFL. The progression of CNFL in the examined datasets manifests a potentially very high variability for mosaic sizes of less than about 1.5 mm2. Above that size, CNFL progression and the intra-patient relative deviations both stabilize significantly in all five datasets. The results of the present examination suggest a recommendation for a minimum sampled area of the central SNP of 1.5 mm2 for reliable and meaningful measurement of CNFL.


Subject(s)
Cornea/innervation , Nerve Fibers/physiology , Trigeminal Nerve/anatomy & histology , Adult , Female , Healthy Volunteers , Humans , Image Processing, Computer-Assisted , Male , Microscopy, Confocal/methods , Middle Aged , Reproducibility of Results
7.
Invest Ophthalmol Vis Sci ; 56(9): 5102-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26241397

ABSTRACT

PURPOSE: We examined agreement among experts in the assessment of corneal subbasal nerve tortuosity. METHODS: Images of corneal subbasal nerves were obtained from investigators at seven sites (Auckland, Boston, Linköping, Manchester, Oslo, Rostock, and Sydney) using laser-scanning in vivo confocal microscopy. A set of 30 images was assembled and ordered by increasing tortuosity by 10 expert graders from the seven sites. In a first experiment, graders assessed tortuosity without a specific definition and performed grading three times, with at least 1 week between sessions. In a second experiment, graders assessed the same image set using four focused tortuosity definitions. Intersession and intergrader repeatability for the experiments were determined using the Spearman rank correlation. RESULTS: Expert graders without a specific tortuosity definition had high intersession (Spearman correlation coefficient 0.80), but poor intergrader (0.62) repeatability. Specific definitions improved intergrader repeatability to 0.79. In particular, tortuosity defined by frequent small-amplitude directional changes (short range tortuosity) or by infrequent large-amplitude directional changes (long range tortuosity), indicated largely independent measures and resulted in improved repeatability across the graders. A further refinement, grading only the most tortuous nerve in a given image, improved the average correlation of a given grader's ordering of images with the group average to 0.86 to 0.90. CONCLUSIONS: Definitions of tortuosity specifying short or long-range tortuosity and considering only the most tortuous nerve in an image improved the agreement in tortuosity grading among a group of expert observers. These definitions could improve accuracy and consistency in quantifying subbasal nerve tortuosity in clinical studies.


Subject(s)
Cornea/innervation , Microscopy, Confocal/methods , Ophthalmic Nerve/pathology , Torsion Abnormality/diagnosis , Humans
8.
PLoS One ; 10(3): e0119842, 2015.
Article in English | MEDLINE | ID: mdl-25811186

ABSTRACT

BACKGROUND: To study the severity of diabetic neuropathy, diabetic retinopathy and grades of diabetic foot syndrome for correlations with corneal subbasal nerve plexus (SBP) changes in Congolese patients with type 2 diabetes. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-eight type 2 diabetes patients with diabetes-related foot ulceration were recruited in a diabetic care unit in Kinshasa, Democratic Republic of Congo. Corneal SBP was investigated by confocal laser-scanning microscopy to analyse nerve fibre density (NFD) [µm/ µm²], number of branches [n] and number of connectivity points [n]. Foot ulceration was graded using the Wagner ulcer classification. Corneal sensitivity (Cochet-Bonnet), Neuropathy Symptom Score (NSS), Neuropathy Disability Score (NDS), ankle-brachial index (ABI) and ophthalmological status were evaluated. Foot ulceration was ranked as mild (Wagner 0-1: 13 patients/46.4%), moderate (Wagner 2-3: 10 patients/35.7%) and severe (Wagner 4-5: 5 patients/17.9%). The correlation between Wagner Score and NFD (p=0.017, r = - 0,454), NDS and NFD (p=0,039, r = - 0.400) as well as Wagner Score and HbA1c (p=0,007, r = - 0.477) was stated. Significant differences in confocal SBP parameters were observed between Wagner 0-1 and Wagner 4 5 (number of branches (p=0.012), number of connectivity points (p=0.001), nerve fibre density (p=0.033)) and ABI (p=0.030), and between Wagner 2-3 and Wagner 4-5 (number of branches (p=0.003), number of connectivity points (p=0.005) and nerve fibre density (p=0.014)). Differences in NDS (p=0.001) and corneal sensation (p=0.032) were significant between Wagner 0-1 and Wagner 2-3. Patients with diabetic retinopathy had significantly longer diabetes duration (p=0.03) and higher NDS (p=0.01), but showed no differences in SBP morphology or corneal sensation. CONCLUSIONS/SIGNIFICANCE: While confirming the diabetic aetiology of foot ulceration due to medial arterial calcification, this study indicates that the grade of diabetic foot syndrome correlates with corneal SBP changes and corneal sensation in patients in sub-Saharan Africa.


Subject(s)
Cornea/innervation , Cornea/pathology , Diabetes Mellitus, Type 2/complications , Diabetic Foot/etiology , Diabetic Neuropathies/etiology , Aged , Congo , Diabetes Mellitus, Type 2/metabolism , Diabetic Foot/diagnosis , Diabetic Neuropathies/diagnosis , Female , Humans , Male , Middle Aged
9.
Invest Ophthalmol Vis Sci ; 55(9): 6082-9, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25159207

ABSTRACT

PURPOSE: A growing number of studies provide evidence that the morphology of the corneal subbasal nerve plexus (SNP), examined by corneal confocal microscopy (CCM), is a sensitive marker for diabetic peripheral neuropathy. However, it has been established that the field of view of a single CCM image (≈0.16 mm(2)) is insufficient for reliable assessment of corneal nerve fiber morphology. The present work proposes a highly automated technique for imaging an extended area of the SNP and creating large-scale montages. METHODS: A moving fixation target is presented on a small display in front of the nonexamined eye. By guiding the viewing direction of the subject in an expanding spiral pattern, the scanned corneal area is continuously expanded. Specialized software algorithms subsequently assemble a mosaic image from the acquired CCM image data. The proposed technique was applied in 12 healthy subjects. RESULTS: Montage images of the SNP were successfully created from all examinations performed. The mean imaged SNP area was 9.86 mm(2) (range, 1.62-18.31 mm(2)). The mean CCM duration was 65.33 seconds (range, 14.58-142.58 seconds). CONCLUSIONS: The key advances embodied in the proposed technique are its high degree of integration and automation (both for image acquisition and image processing) and the resulting short duration of CCM. By providing an easy-to-use tool for obtaining large-scale mosaic images of the SNP, this technique has the potential to facilitate larger clinical trials where SNP morphology is used as a surrogate marker for peripheral neuropathy.


Subject(s)
Cornea/innervation , Diabetic Neuropathies/pathology , Eye Movements , Image Processing, Computer-Assisted/methods , Microscopy, Confocal/methods , Ophthalmic Nerve/anatomy & histology , Adult , Aged , Female , Fixation, Ocular , Humans , Image Processing, Computer-Assisted/instrumentation , Male , Microscopy, Confocal/instrumentation , Middle Aged , Nerve Fibers/pathology , Software , Young Adult
10.
Diabetes ; 63(7): 2454-63, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24574045

ABSTRACT

We sought to determine whether early nerve damage may be detected by corneal confocal microscopy (CCM), skin biopsy, and neurophysiological tests in 86 recently diagnosed type 2 diabetic patients compared with 48 control subjects. CCM analysis using novel algorithms to reconstruct nerve fiber images was performed for all fibers and major nerve fibers (MNF) only. Intraepidermal nerve fiber density (IENFD) was assessed in skin specimens. Neurophysiological measures included nerve conduction studies (NCS), quantitative sensory testing (QST), and cardiovascular autonomic function tests (AFTs). Compared with control subjects, diabetic patients exhibited significantly reduced corneal nerve fiber length (CNFL-MNF), fiber density (CNFD-MNF), branch density (CNBD-MNF), connecting points (CNCP), IENFD, NCS, QST, and AFTs. CNFD-MNF and IENFD were reduced below the 2.5th percentile in 21% and 14% of the diabetic patients, respectively. However, the vast majority of patients with abnormal CNFD showed concomitantly normal IENFD and vice versa. In conclusion, CCM and skin biopsy both detect nerve fiber loss in recently diagnosed type 2 diabetes, but largely in different patients, suggesting a patchy manifestation pattern of small fiber neuropathy. Concomitant NCS impairment points to an early parallel involvement of small and large fibers, but the precise temporal sequence should be clarified in prospective studies.


Subject(s)
Cornea/pathology , Diabetes Mellitus, Type 2/complications , Diabetic Neuropathies/pathology , Nerve Fibers/pathology , Skin/pathology , Adolescent , Adult , Aged , Biopsy , Case-Control Studies , Cornea/ultrastructure , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/pathology , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/pathology , Diagnostic Techniques, Ophthalmological , Early Diagnosis , Female , Humans , Male , Microscopy, Confocal/methods , Middle Aged , Nerve Fibers/ultrastructure , Young Adult
11.
Radiat Oncol ; 8: 136, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23759072

ABSTRACT

BACKGROUND: To quantify the development of radiation neuropathy in corneal subbasal nerve plexus (SNP) after plaque brachytherapy, and the subsequent regeneration of SNP micromorphology and corneal sensation. METHODS: Nine eyes of 9 melanoma patients (ciliary body: 3, iris: 2, conjunctiva: 4) underwent brachytherapy (ruthenium-106 plaque, dose to tumour base: 523 ± 231 Gy). SNP micromorphology was assessed by in-vivo confocal microscopy. Using software developed in-house, pre-irradiation findings were compared with those obtained after 3 days, 1, 4 and 7 months, and related to radiation dose and corneal sensation. RESULTS: After 3 days nerve fibres were absent from the applicator zone and central cornea, and corneal sensation was abolished. The earliest regenerating fibres were seen at the one-month follow-up. By 4 months SNP structures had increased to one-third of pre-treatment status (based on nerve fibre density and nerve fibre count), and corneal sensation had returned to approximately two-thirds of pre-irradiation values. Regeneration of SNP and corneal sensation was nearly complete 7 months after plaque brachytherapy. CONCLUSIONS: The evaluation of SNP micromorphology and corneal sensation is a reliable and clinically useful method for assessing neuropathy after plaque brachytherapy. Radiation-induced neuropathy of corneal nerves develops quickly and is partly reversible within 7 months. The clinical impact of radiation-induced SNP damage is moderate.


Subject(s)
Brachytherapy/adverse effects , Eye Neoplasms/radiotherapy , Melanoma/radiotherapy , Nerve Degeneration/etiology , Radiation Injuries/pathology , Adult , Aged , Cornea/radiation effects , Female , Humans , Male , Microscopy, Confocal , Middle Aged , Nerve Degeneration/pathology , Nerve Fibers/pathology , Nerve Fibers/radiation effects , Peripheral Nervous System Diseases/etiology , Peripheral Nervous System Diseases/pathology , Ruthenium Radioisotopes/adverse effects , Sensation/radiation effects
12.
PLoS One ; 8(1): e52157, 2013.
Article in English | MEDLINE | ID: mdl-23341892

ABSTRACT

BACKGROUND: The alterations of subbasal nerve plexus (SBP) innervation and corneal sensation were estimated non-invasively and compared with the values in healthy volunteers. Additionally, this study addressed the relation of SBP changes to the retinal status, glycemic control and diabetes duration. METHODOLOGY/PRINCIPAL FINDINGS: Eighteen eyes of diabetic patients with peripheral diabetic neuropathy aged 68.8±8.8 years and twenty eyes of healthy volunteers aged 66.3±13.3 yrs. were investigated with in vivo confocal laser-scanning microscopy (CLSM). An adapted algorithm for image analysis was used to quantify the morphological and topological properties of SBP. These properties were correlated to incidence of diabetic retinopathy (DR) and corneal sensation (Cochet-Bonnet esthesiometer). The developed algorithm allows a fully automated analysis of pre-segmented SBP structures. Altogether, 10 parameters were analysed, and all of them revealed significant differences between diabetic patients and healthy volunteers. The nerve fibre density, total fibre length and nerve branches were found to be significantly lower in patients with diabetes than those of control subjects (nerve fibre density 0.006±0.002 vs. 0.020±0.007 mm/mm(2); total fibre length 6223±2419 vs. 19961±6553 µm; nerve branches 25.3±28.6 vs. 141.9±85.7 in healthy volunteers). Also the corneal sensation was significantly lower in diabetic group when compared to controls (43±11 vs. 59±18 mm). There was found no difference in SBP morphology or corneal sensation in the subgroups with (DR) or without (NDR) diabetic retinopathy. CONCLUSIONS/SIGNIFICANCE: SBP parameters were significantly reduced in diabetic patients, compared to control group. Interestingly, the SBP impairment could be shown even in the diabetic patients without DR. Although automatic adapted image analysis simplifies the evaluation of in vivo CLSM data, image acquisition and quantitative analysis should be optimised for the everyday clinical practice.


Subject(s)
Cornea/innervation , Cornea/pathology , Diabetic Retinopathy/diagnosis , Diagnostic Imaging/methods , Health , Aged , Demography , Female , Fundus Oculi , Humans , Male , Microscopy, Confocal
SELECTION OF CITATIONS
SEARCH DETAIL
...