Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Syst Rev ; 13(1): 98, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561810

ABSTRACT

BACKGROUND: Executive functions (EFs) and episodic memory are fundamental components of cognition that deteriorate with age and are crucial for independent living. While numerous reviews have explored the effect of exercise on these components in old age, these reviews screened and analyzed selected older adult populations, or specific exercise modes, thus providing only limited answers to the fundamental question on the effect of exercise on cognition in old age. This article describes the protocol for a systematic review and multilevel meta-analytic study aiming at evaluating the effectiveness of different types of chronic exercise in improving and/or maintaining EFs and long-term episodic memory in older adults. METHODS AND ANALYSIS: The study protocol was written in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Several databases will be searched. Randomized controlled trials (RCTs) conducted in older adults aged ≥ 60 years providing any kind of planned, structured, and repetitive exercise interventions, and EFs and/or episodic memory measures as outcomes, published in English in peer-reviewed journals and doctoral dissertations will be included. Two independent reviewers will screen the selected articles, while a third reviewer will resolve possible conflicts. The Cochrane risk-of-bias tool will be used to assess the quality of the studies. Finally, data will be extracted from the selected articles, and the formal method of combining individual data from the selected studies will be applied using a random effect multilevel meta-analysis. The data analysis will be conducted with the metafor package in R. DISCUSSION AND CONCLUSION: This review will synthesize the existing evidence and pinpoint gaps existing in the literature on the effects of exercise on EFs and episodic memory in healthy and unhealthy older adults. Findings from this meta-analysis will help to design effective exercise interventions for older adults to improve and/or maintain EFs and episodic memory. Its results will be useful for many researchers and professionals working with older adults and their families. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42022367111.


Subject(s)
Executive Function , Memory, Episodic , Humans , Aged , Systematic Reviews as Topic , Meta-Analysis as Topic , Exercise , Review Literature as Topic
3.
Open Res Eur ; 3: 58, 2023.
Article in English | MEDLINE | ID: mdl-38009088

ABSTRACT

Background: Neuromuscular dysfunction is common in older adults and more pronounced in neurodegenerative diseases. In Parkinson's disease (PD), a complex set of factors often prevents the effective performance of activities of daily living that require intact and simultaneous performance of the motor and cognitive tasks. Methods: The cross-sectional study includes a multifactorial mixed-measure design. Between-subject factor grouping the sample will be Parkinson's Disease (early PD vs. healthy). The within-subject factors will be the task complexity (single- vs. dual-task) in each motor activity, i.e., overground walking, semi-tandem stance, and isometric knee extension, and a walking condition (wide vs. narrow lane) will be implemented for the overground walking activity only. To study dual-task (DT) effects, in each motor activity participants will be given a secondary cognitive task, i.e., a visual discrimination task for the overground walking, an attention task for the semi-tandem, and mental arithmetic for the isometric extension. Analyses of DT effects and underlying neuronal correlates will focus on both gait and cognitive performance where applicable. Based on an a priori sample size calculation, a total N = 42 older adults (55-75 years) will be recruited. Disease-specific changes such as laterality in motor unit behavior and cortical control of movement will be studied with high-density surface electromyography and electroencephalography during static and dynamic motor activities, together with whole-body kinematics. Discussion: This study will be one of the first to holistically address early PD neurophysiological and neuromuscular patterns in an ecologically valid environment under cognitive-motor DT conditions of different complexities. The outcomes of the study aim to identify the biomarker for early PD either at the electrophysiological, muscular or kinematic level or in the communication between these systems. Clinical Trial Registration: ClinicalTrials.Gov, NCT05477654. This study was approved by the Medical Ethical Committee (106/2021).

4.
Front Aging Neurosci ; 15: 1169683, 2023.
Article in English | MEDLINE | ID: mdl-37674784

ABSTRACT

Prolonged bed rest causes a multitude of deleterious physiological changes in the human body that require interventions even during immobilization to prevent or minimize these negative effects. In addition to other interventions such as physical and nutritional therapy, non-physical interventions such as cognitive training, motor imagery, and action observation have demonstrated efficacy in mitigating or improving not only cognitive but also motor outcomes in bedridden patients. Recent technological advances have opened new opportunities to implement such non-physical interventions in semi- or fully-immersive environments to enable the development of bed rest countermeasures. Extended Reality (XR), which covers augmented reality (AR), mixed reality (MR), and virtual reality (VR), can enhance the training process by further engaging the kinesthetic, visual, and auditory senses. XR-based enriched environments offer a promising research avenue to investigate the effects of multisensory stimulation on motor rehabilitation and to counteract dysfunctional brain mechanisms that occur during prolonged bed rest. This review discussed the use of enriched environment applications in bedridden patients as a promising tool to improve patient rehabilitation outcomes and suggested their integration into existing treatment protocols to improve patient care. Finally, the neurobiological mechanisms associated with the positive cognitive and motor effects of an enriched environment are highlighted.

5.
Front Rehabil Sci ; 4: 1209900, 2023.
Article in English | MEDLINE | ID: mdl-37546579

ABSTRACT

Introduction: Although early inpatient and post-hospital rehabilitation is recognized as necessary, not all COVID-19 patients have access to rehabilitation. There are no published reports in the literature that investigate the outcomes of patients who do not receive rehabilitation after COVID-19. Our aim was to evaluate possible improvements in determinate functional and psychological parameters in COVID-19 patients two months after their hospital discharge. Methods: On both time points various motor, cognitive, and clinical measurements such as body composition, tensiomyography, blood pressure, spirometry, grip strength test, Timed Up and Go test, gait speed, 30-second chair-stand test, and Montreal Cognitive Assessment, were performed. Additionally, questionnaires such as the SARC-CalF test, Edmonton frail scale, International Physical Activity questionnaire andThe Mediterranean Lifestyle index were conducted to assess lifestyle characteristics. Results: A total of 39 patients (87.2% male; mean age of 59.1 ± 10.3 years), who were hospitalized due to COVID-19 at the Izola General Hospital (IGH), Slovenia between December 2020 and April 2021, were included. Patients were assessed at two time points (T1 and T2): T1 was taken after receiving a negative COVID-19 test and T2 was taken two months after T1. After two months of self-rehabilitation, we have detected a BMI increase (p < .001), fat free mass increase (p < .001), better Edmonton frail scale (p < .001), SARC-CalF score (p = .014) and MoCA score (p = .014). There were no detected changes in lifestyle habits nor in physical performance tests. Discussion: It is already known that COVID-19 has long-term negative consequences regardless of the stage of the disease. Our findings support the notion that patients cannot fully regain all their functions within a two-month period without receiving structured or supervised rehabilitation. Therefore, it is crucial to offer patients comprehensive and structured rehabilitation that incorporates clinical, cognitive, and motor exercises.

6.
Microvasc Res ; 150: 104588, 2023 11.
Article in English | MEDLINE | ID: mdl-37468091

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects the cardiovascular system. The current study investigated changes in heart rate (HR), blood pressure (BP), pulse wave velocity (PWV), and microcirculation in patients recovering from Coronavirus disease 2019 (COVID-19) infection. METHODOLOGY: Out of 43 initially contacted COVID-19 patients, 35 (30 males, 5 females; age: 60 ± 10 years; and body mass index (BMI): 31.8 ± 4.9) participated in this study. Participants were seen on two occasions after hospital discharge; the baseline measurements were collected, either on the day of hospital discharge if a negative PCR test was obtained, or on the 10th day after hospitalization if the PCR test was positive. The second measurements were done 60 days after hospitalization. The vascular measurements were performed using the VICORDER® device and a retinal blood vessel image analysis. RESULTS: A significant increase in systolic BP (SBP) (from 142 mmHg, SD: 15, to 150 mmHg, SD: 19, p = 0.041), reduction in HR (from 76 bpm, SD: 15, to 69 bpm, SD: 11, p = 0.001), and narrower central retinal vein equivalent (CRVE) (from 240.94 µm, SD: 16.05, to 198.05 µm, SD: 17.36, p = 0.013) were found. Furthermore, the trends of increasing PWV (from 11 m/s, SD: 3, to 12 m/s, SD: 3, p = 0.095) and decreasing CRAE (from 138.87 µm, SD: 12.19, to 136.77 µm, SD: 13.19, p = 0.068) were recorded. CONCLUSION: The present study investigated cardiovascular changes following COVID-19 infection at two-time points after hospital discharge (baseline measurements and 60 days post-hospitalization). Significant changes were found in systolic blood pressure, heart rate, and microvasculature indicating that vascular adaptations may be ongoing even weeks after hospitalization from COVID-19 infection. Future studies could involve conducting additional interim assessments during the active infection and post-infection periods.


Subject(s)
COVID-19 , Hypertension , Vascular Stiffness , Male , Female , Humans , Middle Aged , Aged , Pilot Projects , Pulse Wave Analysis , Microcirculation , Vascular Stiffness/physiology , SARS-CoV-2 , Blood Pressure/physiology
7.
Front Psychol ; 14: 1141809, 2023.
Article in English | MEDLINE | ID: mdl-37303911

ABSTRACT

A plethora of evidence links SARS-CoV-2 infection with concomitant cognitive dysfunction, which often persists weeks to months after the acute stages of illness and affects executive function, attention, memory, orientation, and movement control. It remains largely unclear which conditions or factors exacerbate the recovery. In a cohort of N=37 Slovenian patients (5 females, aged M = 58, SD = 10.7 years) that were hospitalized because of COVID-19, the cognitive function and mood states were assessed immediately after discharge and 2-months later to investigate the early post-COVID recovery changes. We assessed the global Montreal Cognitive Assessment (MoCA), Simple and Choice Reaction Times, executive functions (Trail-Making Test - TMT-A and TMT-B), short-term memory (Auditory Verbal Learning Test - AVLT), and visuospatial memory. We monitored depressive and anxiety symptoms and applied general self-efficacy and cognitive complaints questionnaires. Our results showed a global cognitive impairment (MoCA, Z = 332.5; p = 0.012), poorer performance on executive functions (TMT-A, Z = 188; p = 0.014; and TMT-B, Z = 185; p = 0.012), verbal memory (AVLT, F = 33.4; p < 0.001), and delayed recall (AVLT7, F = 17.1; p < 0.001), and higher depressive (Z = 145; p = 0.015) and anxiety (Z = 141; p = 0.003) symptoms after hospital discharge compared to 2-month follow-up, indicating that SARS-CoV-2 may transiently impair cognitive function and adversely affect the mood. No improvement in MoCA was observed in 40.5% of the patients at follow-up, indicating possible long-term effects of COVID-19 on global cognitive performance. Medical comorbidities (p = 0.035) significantly predicted the change in MoCA score over time, while fat mass (FM, p = 0.518), Mediterranean diet index (p = .0.944), and Florida Cognitive Activities Score (p = 0.927) did not. These results suggest that the patients' medical comorbidities at the time of SARS-CoV-2 infection could importantly contribute to the acute impairment of cognitive function and stress the importance of systemic implementation of countermeasures to limit the negative consequences on public health.

8.
Front Physiol ; 14: 1129034, 2023.
Article in English | MEDLINE | ID: mdl-36909226

ABSTRACT

Introduction: The number of obese people in the world is increasing, as is the number of sarcopenic people among the older adults. Although both states are concerning, they can be positively influenced by selected behavioral factors such as adequate nutrition and physical activity. We were interested in the prevalence of sarcopenic obesity in active older people and the influence of behavioral factors on this phenomenon. Methods: The study included 38 older adults (21 women) with a mean age of 75.3 ± 5.0 years. Sarcopenic parameters were determined with different tests: Handgrip Test, Chair Stand Test, Gait Speed, Timed Up and Go Test, and Short Physical Performance Battery. Body composition was measured by dual-energy x-ray absorptiometry. Physical activity level was measured using accelerometers, and nutritional status was assessed using the Mini-Nutritional Assessment and MEDLIFE Index questionnaire. Results: Of all included active participants (the average number of steps per day was 8,916 ± 3,543), 47.4% of them were obese. Of all included women, 52.4% were obese. Sarcopenic obesity was found in three (7.9%) participants. Nutritional status correlated with strength of lower extremities and physical performance tests (gait speed, Timed Up and Go Test and Short Physical performance battery). Higher number of steps per day positively correlates with physical performance. Discussion: Interestingly, we did not find any correlation between the main obesity parameter such as percent body fat or body mass index (and thus sarcopenic obesity) and any of the selected behavioral factors (physical activity, sedentary behavior, or dietary habits). In conclusion, reaching the recommended levels of physical activity in older adults may not be sufficient to prevent the occurrence of obesity and sarcopenic obesity.

9.
Biol Psychol ; 178: 108543, 2023 03.
Article in English | MEDLINE | ID: mdl-36931590

ABSTRACT

There is conflicting evidence about how interference control in healthy adults is affected by walking as compared to standing or sitting. Although the Stroop paradigm is one of the best-studied paradigms to investigate interference control, the neurodynamics associated with the Stroop task during walking have never been studied. We investigated three Stroop tasks using variants with increasing interference levels - word-reading, ink-naming, and the switching of the two tasks, combined in a systematic dual-tasking fashion with three motor conditions - sitting, standing, and treadmill walking. Neurodynamics underlying interference control were recorded using the electroencephalogram. Worsened performance was observed for the incongruent compared to congruent trials and for the switching Stroop compared to the other two variants. The early frontocentral event-related potentials (ERPs) associated with executive functions (P2, N2) differentially signaled posture-related workloads, while the later stages of information processing indexed faster interference suppression and response selection in walking compared to static conditions. The early P2 and N2 components as well as frontocentral Theta and parietal Alpha power were sensitive to increasing workloads on the motor and cognitive systems. The distinction between the type of load (motor and cognitive) became evident only in the later posterior ERP components in which the amplitude non-uniformly reflected the relative attentional demand of a task. Our data suggest that walking might facilitate selective attention and interference control in healthy adults. Existing interpretations of ERP components recorded in stationary settings should be considered with care as they might not be directly transferable to mobile settings.


Subject(s)
Sitting Position , Walking , Adult , Humans , Walking/physiology , Electroencephalography , Evoked Potentials/physiology , Executive Function/physiology , Stroop Test
10.
Life (Basel) ; 13(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36836747

ABSTRACT

The utilization of a non-invasive electroencephalogram (EEG) as an input sensor is a common approach in the field of the brain-computer interfaces (BCI). However, the collected EEG data pose many challenges, one of which may be the age-related variability of event-related potentials (ERPs), which are often used as primary EEG BCI signal features. To assess the potential effects of aging, a sample of 27 young and 43 older healthy individuals participated in a visual oddball study, in which they passively viewed frequent stimuli among randomly occurring rare stimuli while being recorded with a 32-channel EEG set. Two types of EEG datasets were created to train the classifiers, one consisting of amplitude and spectral features in time and another with extracted time-independent statistical ERP features. Among the nine classifiers tested, linear classifiers performed best. Furthermore, we show that classification performance differs between dataset types. When temporal features were used, maximum individuals' performance scores were higher, had lower variance, and were less affected overall by within-class differences such as age. Finally, we found that the effect of aging on classification performance depends on the classifier and its internal feature ranking. Accordingly, performance will differ if the model favors features with large within-class differences. With this in mind, care must be taken in feature extraction and selection to find the correct features and consequently avoid potential age-related performance degradation in practice.

11.
Article in English | MEDLINE | ID: mdl-36767687

ABSTRACT

Understanding the changes in cognitive processing that accompany changes in posture can expand our understanding of embodied cognition and open new avenues for applications in (neuro)ergonomics. Recent studies have challenged the question of whether standing up alters cognitive performance. An electronic database search for randomized controlled trials was performed using Academic Search Complete, CINAHL Ultimate, MEDLINE, PubMed, and Web of Science following PRISMA guidelines, PICOS framework, and standard quality assessment criteria (SQAC). We pooled data from a total of 603 healthy young adults for incongruent and 578 for congruent stimuli and Stroop effect (mean age = 24 years). Using random-effects results, no difference was found between sitting and standing for the Stroop effect (Hedges' g = 0.13, 95% CI = -0.04 to 0.29, p = 0.134), even when comparing congruent (Hedges' g = 0.10; 95% CI: -0.132 to 0.339; Z = 0.86; p = 0.389) and incongruent (Hedges' g = 0.18; 95% CI: -0.072 to 0.422; Z = 1.39; p = 0.164) stimuli separately. Importantly, these results imply that changing from a seated to a standing posture in healthy young adults is unlikely to have detrimental effects on selective attention and cognitive control. To gain a full understanding of this phenomenon, further research should examine this effect in a population of healthy older adults, as well as in a population with pathology.


Subject(s)
Ergonomics , Posture , Humans , Young Adult , Aged , Adult , Stroop Test , Sitting Position , Cognition
12.
Front Aging Neurosci ; 14: 819576, 2022.
Article in English | MEDLINE | ID: mdl-35601618

ABSTRACT

With advanced age, there is a loss of reaction speed that may contribute to an increased risk of tripping and falling. Avoiding falls and injuries requires awareness of the threat, followed by selection and execution of the appropriate motor response. Using event-related potentials (ERPs) and a simple visual reaction task (RT), the goal of our study was to distinguish sensory and motor processing in the upper- and lower-limbs while attempting to uncover the main cause of age-related behavioral slowing. Strength (amplitudes) as well as timing and speed (latencies) of various stages of stimulus- and motor-related processing were analyzed in 48 healthy individuals (young adults, n = 24, mean age = 34 years; older adults, n = 24, mean age = 67 years). The behavioral results showed a significant age-related slowing, where the younger compared to older adults exhibited shorter RTs for the upper- (222 vs. 255 ms; p = 0.006, respectively) and the lower limb (257 vs. 274 ms; p = 0.048, respectively) as well as lower variability in both modalities (p = 0.001). Using ERP indices, age-related slowing of visual stimulus processing was characterized by overall larger amplitudes with delayed latencies of endogenous potentials in older compared with younger adults. While no differences were found in the P1 component, the later components of recorded potentials for visual stimuli processing were most affected by age. This was characterized by increased N1 and P2 amplitudes and delayed P2 latencies in both upper and lower extremities. The analysis of motor-related cortical potentials (MRCPs) revealed stronger MRCP amplitude for upper- and a non-significant trend for lower limbs in older adults. The MRCP amplitude was smaller and peaked closer to the actual motor response for the upper- than for the lower limb in both age groups. There were longer MRCP onset latencies for lower- compared to upper-limb in younger adults, and a non-significant trend was seen in older adults. Multiple regression analyses showed that the onset of the MRCP peak consistently predicted reaction time across both age groups and limbs tested. However, MRCP rise time and P2 latency were also significant predictors of simple reaction time, but only in older adults and only for the upper limbs. Our study suggests that motor cortical processes contribute most strongly to the slowing of simple reaction time in advanced age. However, late-stage cortical processing related to sensory stimuli also appears to play a role in upper limb responses in the elderly. This process most likely reflects less efficient recruitment of neuronal resources required for the upper and lower extremity response task in older adults.

13.
Front Aging Neurosci ; 13: 773287, 2021.
Article in English | MEDLINE | ID: mdl-34867299

ABSTRACT

Background: Hearing impairments are associated with reduced walking performance under Dual-task (DT) conditions. Little is known about the neural representation of DT performance while walking in this target group compared to healthy controls or younger adults. Therefore, utilizing the Mobile Brain/Body Imaging approach (MoBI), we aim at gaining deeper insights into the brain dynamics underlying the interaction of cognitive and motor processes during different DT conditions (visual and auditory) controlling for age and the potential performance decrements of older adults with hearing impairments. Methods: The cross-sectional study integrates a multifactorial mixed-measure design. Between-subject factors grouping the sample will be age (younger vs. older adults) and hearing impairment (mild vs. not hearing impaired). The within-subject factors will be the task complexity (single- vs. DT) and cognitive task modality (visual vs. auditory). Stimuli of the cognitive task will vary according to the stimulus modality (visual vs. auditory), presentation side (left vs. right), and presentation-response compatibility (ipsilateral vs. contralateral). Analyses of DT costs and underlying neuronal correlates focus either on gait or cognitive performance. Based on an a priori sample size calculation 96 (48 healthy and 48 mildly hearing impaired) community-dwelling older adults (50-70 years) and 48 younger adults (20-30 years) will be recruited. Gait parameters of speed and rhythm will be captured. EEG activity will be recorded using 64 active electrodes. Discussion: The study evaluates cognitive-motor interference (CMI) in groups of young and older adults as well as older adults with hearing impairment. The underlying processes of the interaction between motor and cognitive tasks will be identified at a behavioral and neurophysiological level comparing an auditory or a visual secondary task. We assume that performance differences are linked to different cognitive-motor processes, i.e., stimulus input, resource allocation, and movement execution. Moreover, for the different DT conditions (auditory vs. visual) we assume performance decrements within the auditory condition, especially for older, hearing-impaired adults. Findings will provide evidence of general mechanisms of CMI (ST vs. DT walking) as well as task-specific effects in dual-task performance while over ground walking.

SELECTION OF CITATIONS
SEARCH DETAIL
...