Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cells ; 12(22)2023 11 20.
Article in English | MEDLINE | ID: mdl-37998397

ABSTRACT

Bardet-Biedl syndrome (BBS) is an archetypal ciliopathy caused by dysfunction of primary cilia. BBS affects multiple tissues, including the kidney, eye and hypothalamic satiety response. Understanding pan-tissue mechanisms of pathogenesis versus those which are tissue-specific, as well as gauging their associated inter-individual variation owing to genetic background and stochastic processes, is of paramount importance in syndromology. The BBSome is a membrane-trafficking and intraflagellar transport (IFT) adaptor protein complex formed by eight BBS proteins, including BBS1, which is the most commonly mutated gene in BBS. To investigate disease pathogenesis, we generated a series of clonal renal collecting duct IMCD3 cell lines carrying defined biallelic nonsense or frameshift mutations in Bbs1, as well as a panel of matching wild-type CRISPR control clones. Using a phenotypic screen and an unbiased multi-omics approach, we note significant clonal variability for all assays, emphasising the importance of analysing panels of genetically defined clones. Our results suggest that BBS1 is required for the suppression of mesenchymal cell identities as the IMCD3 cell passage number increases. This was associated with a failure to express epithelial cell markers and tight junction formation, which was variable amongst clones. Transcriptomic analysis of hypothalamic preparations from BBS mutant mice, as well as BBS patient fibroblasts, suggested that dysregulation of epithelial-to-mesenchymal transition (EMT) genes is a general predisposing feature of BBS across tissues. Collectively, this work suggests that the dynamic stability of the BBSome is essential for the suppression of mesenchymal cell identities as epithelial cells differentiate.


Subject(s)
Bardet-Biedl Syndrome , Humans , Mice , Animals , Bardet-Biedl Syndrome/genetics , Bardet-Biedl Syndrome/metabolism , Bardet-Biedl Syndrome/pathology , Mice, Knockout , Proteins/metabolism , Cilia/metabolism , Microtubule-Associated Proteins/metabolism
2.
Sci Rep ; 10(1): 13763, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32792680

ABSTRACT

Mutations in the SNX14 gene cause spinocerebellar ataxia, autosomal recessive 20 (SCAR20) in both humans and dogs. Studies implicating the phenotypic consequences of SNX14 mutations to be consequences of subcellular disruption to autophagy and lipid metabolism have been limited to in vitro investigation of patient-derived dermal fibroblasts, laboratory engineered cell lines and developmental analysis of zebrafish morphants. SNX14 homologues Snz (Drosophila) and Mdm1 (yeast) have also been conducted, demonstrated an important biochemical role during lipid biogenesis. In this study we report the effect of loss of SNX14 in mice, which resulted in embryonic lethality around mid-gestation due to placental pathology that involves severe disruption to syncytiotrophoblast cell differentiation. In contrast to other vertebrates, zebrafish carrying a homozygous, maternal zygotic snx14 genetic loss-of-function mutation were both viable and anatomically normal. Whilst no obvious behavioural effects were observed, elevated levels of neutral lipids and phospholipids resemble previously reported effects on lipid homeostasis in other species. The biochemical role of SNX14 therefore appears largely conserved through evolution while the consequences of loss of function varies between species. Mouse and zebrafish models therefore provide valuable insights into the functional importance of SNX14 with distinct opportunities for investigating its cellular and metabolic function in vivo.


Subject(s)
Fetal Viability/genetics , Lipid Metabolism/genetics , Placenta/abnormalities , Sorting Nexins/genetics , Spinocerebellar Ataxias/genetics , Animals , Animals, Genetically Modified , Cell Differentiation/genetics , Embryonic Development/genetics , Female , Humans , Mice , Mice, Inbred C57BL , Models, Animal , Phenotype , Phospholipids/blood , Pregnancy , Trophoblasts/cytology , Zebrafish
3.
F1000Res ; 8: 273, 2019.
Article in English | MEDLINE | ID: mdl-31231513

ABSTRACT

Background: Lenz-Majewski syndrome (LMS) is characterized by osteosclerosis and hyperostosis of skull, vertebrae and tubular bones as well as craniofacial, dental, cutaneous, and digit abnormalities. We previously found that LMS is caused by de novo dominant missense mutations in the  PTDSS1 gene, which encodes phosphatidylserine synthase 1 (PSS1), an enzyme that catalyses the conversion of phosphatidylcholine to phosphatidylserine. The mutations causing LMS result in a gain-of-function, leading to increased enzyme activity and blocking end-product inhibition of PSS1. Methods: Here, we have used transpose-mediated transgenesis to attempt to stably express wild-type and mutant forms of human PTDSS1 ubiquitously or specifically in chondrocytes, osteoblasts or osteoclasts in zebrafish. Results: We report multiple genomic integration sites for each of 8 different transgenes. While we confirmed that the ubiquitously driven transgene constructs were functional in terms of driving gene expression following transient transfection in HeLa cells, and that all lines exhibited expression of a heart-specific cistron within the transgene, we failed to detect PTDSS1 gene expression at either the RNA or protein levels in zebrafish. All wild-type and mutant transgenic lines of zebrafish exhibited mild scoliosis with variable incomplete penetrance which was never observed in non-transgenic animals. Conclusions: Collectively the data suggest that the transgenes are silenced, that animals with integrations that escape silencing are not viable, or that other technical factors prevent transgene expression. In conclusion, the incomplete penetrance of the phenotype and the lack of a matched transgenic control model precludes further meaningful investigations of these transgenic lines.


Subject(s)
CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase , Nitrogenous Group Transferases/genetics , Short Rib-Polydactyly Syndrome , Zebrafish , Animals , Animals, Genetically Modified , CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase/genetics , Cell Lineage , HeLa Cells , Humans , Transgenes
4.
Dis Model Mech ; 11(11)2018 11 09.
Article in English | MEDLINE | ID: mdl-30266836

ABSTRACT

FGFR2c regulates many aspects of craniofacial and skeletal development. Mutations in the FGFR2 gene are causative of multiple forms of syndromic craniosynostosis, including Crouzon syndrome. Paradoxically, mouse studies have shown that the activation (Fgfr2cC342Y; a mouse model for human Crouzon syndrome), as well as the removal (Fgfr2cnull), of the FGFR2c isoform can drive suture abolishment. This study aims to address the downstream effects of pathogenic FGFR2c signalling by studying the effects of Fgfr2c overexpression. Conditional overexpression of Fgfr2c (R26RFgfr2c;ßact) results in craniofacial hypoplasia as well as microtia and cleft palate. Contrary to Fgfr2cnull and Fgfr2cC342Y, Fgfr2c overexpression is insufficient to drive onset of craniosynostosis. Examination of the MAPK/ERK pathway in the embryonic sutures of Fgfr2cC342Y and R26RFgfr2c;ßact mice reveals that both mutants have increased pERK expression. The contrasting phenotypes between Fgfr2cC342Y and R26RFgfr2c;ßact mice prompted us to assess the impact of the Fgfr2c overexpression allele on the Crouzon mouse (Fgfr2cC342Y), in particular its effects on the coronal suture. Our results demonstrate that Fgfr2c overexpression is sufficient to partially rescue craniosynostosis through increased proliferation and reduced osteogenic activity in E18.5 Fgfr2cC342Y embryos. This study demonstrates the intricate balance of FGF signalling required for correct calvarial bone and suture morphogenesis, and that increasing the expression of the wild-type FGFR2c isoform could be a way to prevent or delay craniosynostosis progression.


Subject(s)
Bone and Bones/abnormalities , Bone and Bones/pathology , Craniofacial Dysostosis/pathology , Craniosynostoses/pathology , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Alkaline Phosphatase/metabolism , Alleles , Animals , Cell Proliferation , Cleft Palate/pathology , Congenital Microtia/genetics , Congenital Microtia/pathology , Cranial Sutures/pathology , Craniofacial Dysostosis/genetics , Craniosynostoses/genetics , HEK293 Cells , Humans , MAP Kinase Signaling System , Mice , Mutation/genetics , Neural Crest/metabolism , Neural Crest/pathology , Phenotype , Receptor, Fibroblast Growth Factor, Type 2/genetics , Skull/pathology
5.
EMBO J ; 37(11)2018 06 01.
Article in English | MEDLINE | ID: mdl-29764981

ABSTRACT

TDP-43 (encoded by the gene TARDBP) is an RNA binding protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS). However, how TARDBP mutations trigger pathogenesis remains unknown. Here, we use novel mouse mutants carrying point mutations in endogenous Tardbp to dissect TDP-43 function at physiological levels both in vitro and in vivo Interestingly, we find that mutations within the C-terminal domain of TDP-43 lead to a gain of splicing function. Using two different strains, we are able to separate TDP-43 loss- and gain-of-function effects. TDP-43 gain-of-function effects in these mice reveal a novel category of splicing events controlled by TDP-43, referred to as "skiptic" exons, in which skipping of constitutive exons causes changes in gene expression. In vivo, this gain-of-function mutation in endogenous Tardbp causes an adult-onset neuromuscular phenotype accompanied by motor neuron loss and neurodegenerative changes. Furthermore, we have validated the splicing gain-of-function and skiptic exons in ALS patient-derived cells. Our findings provide a novel pathogenic mechanism and highlight how TDP-43 gain of function and loss of function affect RNA processing differently, suggesting they may act at different disease stages.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation/genetics , RNA-Binding Proteins/genetics , Alternative Splicing/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Exons/genetics , Humans , Mice , Motor Neurons/metabolism , Motor Neurons/pathology , Mutation , RNA Splicing/genetics
6.
Hum Mol Genet ; 27(11): 1927-1940, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29635513

ABSTRACT

Mutations in SNX14 cause the autosomal recessive cerebellar ataxia 20 (SCAR20). Mutations generally result in loss of protein although several coding region deletions have also been reported. Patient-derived fibroblasts show disrupted autophagy, but the precise function of SNX14 is unknown. The yeast homolog, Mdm1, functions in endoplasmic reticulum (ER)-lysosome/vacuole inter-organelle tethering, but functional conservation in mammals is still required. Here, we show that loss of SNX14 alters but does not block autophagic flux. In addition, we find that SNX14 is an ER-associated protein that functions in neutral lipid homeostasis and inter-organelle crosstalk. SNX14 requires its N-terminal transmembrane helices for ER localization, while the Phox homology (PX) domain is dispensable for subcellular localization. Both SNX14-mutant fibroblasts and SNX14KO HEK293 cells accumulate aberrant cytoplasmic vacuoles, suggesting defects in endolysosomal homeostasis. However, ER-late endosome/lysosome contact sites are maintained in SNX14KO cells, indicating that it is not a prerequisite for ER-endolysosomal tethering. Further investigation of SNX14- deficiency indicates general defects in neutral lipid metabolism. SNX14KO cells display distinct perinuclear accumulation of filipin in LAMP1-positive lysosomal structures indicating cholesterol accumulation. Consistent with this, SNX14KO cells display a slight but detectable decrease in cholesterol ester levels, which is exacerbated with U18666A. Finally, SNX14 associates with ER-derived lipid droplets (LD) following oleate treatment, indicating a role in ER-LD crosstalk. We therefore identify an important role for SNX14 in neutral lipid homeostasis between the ER, lysosomes and LDs that may provide an early intervention target to alleviate the clinical symptoms of SCAR20.


Subject(s)
Endoplasmic Reticulum/genetics , Lipid Metabolism/genetics , Sorting Nexins/genetics , Spinocerebellar Ataxias/genetics , Autophagy/genetics , Endoplasmic Reticulum/metabolism , Endosomes , Gene Knockout Techniques , HEK293 Cells , Homeostasis/drug effects , Humans , Intermediate Filament Proteins/genetics , Lipid Droplets/metabolism , Lysosomes/drug effects , Lysosomes/genetics , Mutation , Oleic Acid/pharmacology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Sorting Nexins/deficiency , Sorting Nexins/metabolism , Spinocerebellar Ataxias/metabolism , Spinocerebellar Ataxias/physiopathology
7.
J Clin Endocrinol Metab ; 103(3): 917-925, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29342293

ABSTRACT

Context: Small for gestational age (SGA) can be the result of fetal growth restriction, which is associated with perinatal morbidity and mortality. Mechanisms that control prenatal growth are poorly understood. Objective: The aim of the current study was to gain more insight into prenatal growth failure and determine an effective diagnostic approach in SGA newborns. We hypothesized that one or more copy number variations (CNVs) and disturbed methylation and sequence variants may be present in genes associated with fetal growth. Design: A prospective cohort study of subjects with a low birth weight for gestational age. Setting: The study was conducted at an academic pediatric research institute. Patients: A total of 21 SGA newborns with a mean birth weight below the first centile and a control cohort of 24 appropriate-for-gestational-age newborns were studied. Interventions: Array comparative genomic hybridization, genome-wide methylation studies, and exome sequencing were performed. Main Outcome Measures: The numbers of CNVs, methylation disturbances, and sequence variants. Results: The genetic analyses demonstrated three CNVs, one systematically disturbed methylation pattern, and one sequence variant explaining SGA. Additional methylation disturbances and sequence variants were present in 20 patients. In 19 patients, multiple abnormalities were found. Conclusion: Our results confirm the influence of a large number of mechanisms explaining dysregulation of fetal growth. We concluded that CNVs, methylation disturbances, and sequence variants all contribute to prenatal growth failure. These genetic workups can be an effective diagnostic approach in SGA newborns.


Subject(s)
Birth Weight/genetics , Fetal Growth Retardation/genetics , Infant, Small for Gestational Age , Comparative Genomic Hybridization , DNA Copy Number Variations , DNA Methylation , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Gestational Age , Humans , Infant, Newborn , Male , Prospective Studies , Exome Sequencing/methods
8.
Biol Open ; 6(2): 223-231, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28069589

ABSTRACT

Syndromic craniosynostosis caused by mutations in FGFR2 is characterised by developmental pathology in both endochondral and membranous skeletogenesis. Detailed phenotypic characterisation of features in the membranous calvarium, the endochondral cranial base and other structures in the axial and appendicular skeleton has not been performed at embryonic stages. We investigated bone development in the Crouzon mouse model (Fgfr2C342Y) at pre- and post-ossification stages to improve understanding of the underlying pathogenesis. Phenotypic analysis was performed by whole-mount skeletal staining (Alcian Blue/Alizarin Red) and histological staining of sections of CD1 wild-type (WT), Fgfr2C342Y/+ heterozygous (HET) and Fgfr2C342Y/C342Y homozygous (HOM) mouse embryos from embryonic day (E)12.5-E17.5 stages. Gene expression (Sox9, Shh, Fgf10 and Runx2) was studied by in situ hybridisation and protein expression (COL2A1) by immunohistochemistry. Our analysis has identified severely decreased osteogenesis in parts of the craniofacial skeleton together with increased chondrogenesis in parts of the endochondral and cartilaginous skeleton in HOM embryos. The Sox9 expression domain in tracheal and basi-cranial chondrocytic precursors at E13.5 in HOM embryos is increased and expanded, correlating with the phenotypic observations which suggest FGFR2 signalling regulates Sox9 expression. Combined with abnormal staining of type II collagen in pre-chondrocytic mesenchyme, this is indicative of a mesenchymal condensation defect. An expanded spectrum of phenotypic features observed in the Fgfr2C342Y/C342Y mouse embryo paves the way towards better understanding the clinical attributes of human Crouzon-Pfeiffer syndrome. FGFR2 mutation results in impaired skeletogenesis; however, our findings suggest that many phenotypic aberrations stem from a primary failure of pre-chondrogenic/osteogenic mesenchymal condensation and link FGFR2 to SOX9, a principal regulator of skeletogenesis.

9.
Reprod Biomed Online ; 31(5): 681-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26371709

ABSTRACT

Annexin A5 is a placental anti-coagulant protein that contains four nucleotide substitutions (M2 haplotype) in its promoter. This haplotype is a risk factor for recurrent spontaneous abortion (RSA). The influence of the M2 haplotype in the gestational timing of spontaneous abortions, paternal risk and relationships with known risk factors were investigated. European couples (n = 500) who had experienced three or more consecutive spontaneous abortions, and two fertile control groups, were selected for this study. The allele frequency of M2 was significantly higher among patients who had experienced early RSA than among controls (P = 0.002). No difference was found between controls and patients who had undergone late spontaneous abortions. No difference was found between patients who had experienced RSA who had a live birth or no live births, or between patients who were positive or negative for known risk factors. Male and female partners in each group had similar allele frequencies of M2. The M2 haplotype is a risk factor for early spontaneous abortions, before the 12th week of gestation, and confers about the same relative risk to carriers of both sexes. Having one or more M2 allele(s) in combination with other risk factors further increases the RSA risk.


Subject(s)
Abortion, Habitual/genetics , Annexin A5/genetics , Haplotypes , Promoter Regions, Genetic , Adult , Alleles , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Male , Pregnancy , Risk Factors , White People/genetics
10.
PLoS One ; 10(5): e0125757, 2015.
Article in English | MEDLINE | ID: mdl-25966306

ABSTRACT

The mammalian cranial vault largely consists of five flat bones that are joined together along their edges by soft fibrous tissues called sutures. Premature closure of the cranial sutures, craniosynostosis, can lead to serious clinical pathology unless there is surgical intervention. Research into the genetic basis of the disease has led to the development of various animal models that display this condition, e.g. mutant type Fgfr2C342Y/+ mice which display early fusion of the coronal suture (joining the parietal and frontal bones). However, whether the biomechanical properties of the mutant and wild type bones are affected has not been investigated before. Therefore, nanoindentation was used to compare the elastic modulus of cranial bone and sutures in wild type (WT) and Fgfr2C342Y/+mutant type (MT) mice during their postnatal development. Further, the variations in properties with indentation position and plane were assessed. No difference was observed in the elastic modulus of parietal bone between the WT and MT mice at postnatal (P) day 10 and 20. However, the modulus of frontal bone in the MT group was lower than the WT group at both P10 (1.39±0.30 vs. 5.32±0.68 GPa; p<0.05) and P20 (5.57±0.33 vs. 7.14±0.79 GPa; p<0.05). A wide range of values was measured along the coronal sutures for both the WT and MT samples, with no significant difference between the two groups. Findings of this study suggest that the inherent mechanical properties of the frontal bone in the mutant mice were different to the wild type mice from the same genetic background. These differences may reflect variations in the degree of biomechanical adaptation during skull growth, which could have implications for the surgical management of craniosynostosis patients.


Subject(s)
Craniosynostoses/pathology , Elastic Modulus , Skull/pathology , Animals , Biomechanical Phenomena , Craniosynostoses/genetics , Mice , Receptor, Fibroblast Growth Factor, Type 2/genetics , Skull/chemistry
11.
Cardiovasc Res ; 90(1): 77-87, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21062920

ABSTRACT

AIMS: Recent immunohistochemical studies observed the loss of plakoglobin (PG) from the intercalated disc (ID) as a hallmark of arrhythmogenic right ventricular cardiomyopathy (ARVC), suggesting a final common pathway for this disease. However, the underlying molecular processes are poorly understood. METHODS AND RESULTS: We have identified novel mutations in the desmosomal cadherin desmocollin 2 (DSC2 R203C, L229X, T275M, and G371fsX378). The two missense mutations (DSC2 R203C and T275M) have been functionally characterized, together with a previously reported frameshift variant (DSC2 A897fsX900), to examine their pathogenic potential towards PG's functions at the ID. The three mutant proteins were transiently expressed in various cellular systems and assayed for expression, processing, localization, and binding to other desmosomal components in comparison to wild-type DSC2a protein. The two missense mutations showed defects in proteolytic cleavage, a process which is required for the functional activation of mature cadherins. In both cases, this is thought to cause a reduction of functional DSC2 at the desmosomes in cardiac cells. In contrast, the frameshift variant was incorporated into cardiac desmosomes; however, it showed reduced binding to PG. CONCLUSION: Despite different modes of action, for all three variants, the reduced ability to provide a ligand for PG at the desmosomes was observed. This is in agreement with the reduced intensity of PG at these structures observed in ARVC patients.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia/metabolism , Desmocollins/metabolism , Mutation, Missense , Myocytes, Cardiac/metabolism , Animals , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/physiopathology , Base Sequence , COS Cells , Chlorocebus aethiops , DNA Mutational Analysis , Desmocollins/genetics , Desmosomes/metabolism , Humans , Ligands , Molecular Sequence Data , Protein Binding , Protein Processing, Post-Translational , Rats , Transfection , gamma Catenin/metabolism
13.
Nature ; 441(7091): 366-70, 2006 May 18.
Article in English | MEDLINE | ID: mdl-16625210

ABSTRACT

The eight catalytic subunits of the mammalian phosphoinositide-3-OH kinase (PI(3)K) family form the backbone of an evolutionarily conserved signalling pathway; however, the roles of most PI(3)K isoforms in organismal physiology and disease are unknown. To delineate the role of p110alpha, a ubiquitously expressed PI(3)K involved in tyrosine kinase and Ras signalling, here we generated mice carrying a knockin mutation (D933A) that abrogates p110alpha kinase activity. Homozygosity for this kinase-dead p110alpha led to embryonic lethality. Mice heterozygous for this mutation were viable and fertile, but displayed severely blunted signalling via insulin-receptor substrate (IRS) proteins, key mediators of insulin, insulin-like growth factor-1 and leptin action. Defective responsiveness to these hormones led to reduced somatic growth, hyperinsulinaemia, glucose intolerance, hyperphagia and increased adiposity in mice heterozygous for the D933A mutation. This signalling function of p110alpha derives from its highly selective recruitment and activation to IRS signalling complexes compared to p110beta, the other broadly expressed PI(3)K isoform, which did not contribute to IRS-associated PI(3)K activity. p110alpha was the principal IRS-associated PI(3)K in cancer cell lines. These findings demonstrate a critical role for p110alpha in growth factor and metabolic signalling and also suggest an explanation for selective mutation or overexpression of p110alpha in a variety of cancers.


Subject(s)
Growth/physiology , Insulin/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Adiposity , Animals , Body Weight , Catalytic Domain , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Eating , Embryo Loss/enzymology , Embryo Loss/genetics , Embryo Loss/metabolism , Enzyme Activation , Glucose/metabolism , Heterozygote , Homozygote , Hyperinsulinism/metabolism , Insulin Receptor Substrate Proteins , Leptin/metabolism , Mice , Mutation/genetics , Neoplasms/metabolism , Neoplasms/pathology , Phosphatidylinositol 3-Kinases/deficiency , Phosphatidylinositol 3-Kinases/genetics , Phosphoproteins/metabolism , Receptor, Insulin/metabolism , Signal Transduction
14.
Nature ; 431(7011): 1007-11, 2004 Oct 21.
Article in English | MEDLINE | ID: mdl-15496927

ABSTRACT

Inflammatory substances released by mast cells induce and maintain the allergic response. Mast cell differentiation and activation are regulated, respectively, by stem cell factor (SCF; also known as Kit ligand) and by allergen in complex with allergen-specific immunoglobulin E (IgE). Activated SCF receptors and high-affinity receptors for IgE (FcvarepsilonRI) engage phosphoinositide 3-kinases (PI(3)Ks) to generate intracellular lipid second messenger signals. Here, we report that genetic or pharmacological inactivation of the p110delta isoform of PI(3)K in mast cells leads to defective SCF-mediated in vitro proliferation, adhesion and migration, and to impaired allergen-IgE-induced degranulation and cytokine release. Inactivation of p110delta protects mice against anaphylactic allergic responses. These results identify p110delta as a new target for therapeutic intervention in allergy and mast-cell-related pathologies.


Subject(s)
Hypersensitivity/enzymology , Mast Cells/enzymology , Phosphatidylinositol 3-Kinases/metabolism , Anaphylaxis/enzymology , Anaphylaxis/immunology , Animals , Cell Adhesion/drug effects , Cell Count , Cell Degranulation/drug effects , Cell Movement/drug effects , Class I Phosphatidylinositol 3-Kinases , Cytokines/metabolism , Dermis/cytology , Genes, Essential/genetics , Humans , Hypersensitivity/immunology , Interleukin-3/pharmacology , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , Mast Cells/cytology , Mast Cells/immunology , Mast Cells/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/genetics , Phosphoinositide-3 Kinase Inhibitors , Receptors, IgE/immunology , Second Messenger Systems/physiology , Stem Cell Factor/pharmacology
15.
Science ; 297(5583): 1031-4, 2002 Aug 09.
Article in English | MEDLINE | ID: mdl-12130661

ABSTRACT

Class IA phosphoinositide 3-kinases (PI3Ks) are a family of p85/p110 heterodimeric lipid kinases that generate second messenger signals downstream of tyrosine kinases, thereby controlling cell metabolism, growth, proliferation, differentiation, motility, and survival. Mammals express three class IA catalytic subunits: p110alpha, p110beta, and p110delta. It is unclear to what extent these p110 isoforms have overlapping or distinct biological roles. Mice expressing a catalytically inactive form of p110delta (p110delta(D910A)) were generated by gene targeting. Antigen receptor signaling in B and T cells was impaired and immune responses in vivo were attenuated in p110delta mutant mice. They also developed inflammatory bowel disease. These results reveal a selective role for p110delta in immunity.


Subject(s)
B-Lymphocytes/immunology , Phosphatidylinositol 3-Kinases/metabolism , Protein Serine-Threonine Kinases , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Animals , Antigens/immunology , B-Lymphocytes/enzymology , Bone Marrow Cells/cytology , Catalytic Domain , Cell Differentiation , Cell Division , Class I Phosphatidylinositol 3-Kinases , Female , Gene Targeting , Hematopoietic Stem Cells/cytology , Immunoglobulins/blood , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/pathology , Interleukin-2/biosynthesis , Intestinal Mucosa/pathology , Lymph Nodes/cytology , Lymph Nodes/pathology , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/genetics , Point Mutation , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Signal Transduction , Spleen/cytology , Spleen/pathology , T-Lymphocytes/enzymology , Thymus Gland/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...