ABSTRACT
The classification of insecticide resistance in sand flies populations is based on concepts and methodologies used to characterize the susceptibility profile in mosquitoes. This can generate erroneous and subjective interpretations since they are biologically different organisms. In this context, the goal of this review is to analyze the works and/or articles that aimed at characterizing the susceptibility of sand flies and describing the methodological parameters, in order to improve future works to estimate more accurately the resistance of sand flies to insecticides. Using keywords that refer to the purpose of this review, scientific studies in English, Spanish and Portuguese published until December 2019 were analyzed. A total of 3481 articles were found in searches in four databases (Pubmed, Scopus, BVS and ScienceDirect) and 61 were selected. The panorama of sand-fly resistance revealed 47 populations of sand flies, of species Phlebotomus papatasi, Ph. argentipes e Sergentomyia shorttii, with confirmed resistance, and 28 populations of species Ph. papatasi, Ph. argentipes, Ph. sergenti e Lutzomyia longipalpis. Of the 61 selected studies, only three studies performed comparisons between field and colony phlebotomines, and all colony populations were less susceptible than field populations to at least one tested insecticide. The lethal doses and lethal times of sand flies are very varied, revealing that there is no specific protocol for assessing the susceptibility of sand flies to insecticides. For a quick and early detection of sand flies' resistance to insecticides, we suggest the use of CDC bottle tests with an SRL to estimate the local Dose and Diagnostic Time. Males and females can be used in the same proportion, but with only female sand flies in the control group. Females with engorged abdomen or pregnant should be avoided in the experiment and, if possible, use the F1 generation of field sand flies, up to 5 days old, or at least 100 sand flies to reduce the influence of age on the susceptibility of the population.
Subject(s)
Insecticide Resistance , Psychodidae , Animals , Culicidae/drug effects , Female , Insecticides , Male , PhlebotomusABSTRACT
The active locomotion of ticks is directly associated with the epidemiology of tick-borne diseases, as it has important implications for the interaction of ticks with their hosts and their dispersion in the environment. In an attempt to elucidate the factors involved in the dispersion of Amblyomma sculptum, the present work aimed to characterize different aspects of the active locomotion of A. sculptum nymphs under laboratory conditions. To this end, nymphs were placed on a string at a 70° inclination and their walking activity was recorded daily along with their survival period. During their lifetime, ticks walked an average of 110 m. Their locomotion was not in a straight line and nymphs changed direction 142 times throughout their lifetimes. The mean distance walked per experimental day was 1.8 m, while the average walking distance before changing direction was 52 cm. The distance walked per experimental day reduced over time. The survival of ticks was affected by walking; resting nymphs survived for over 6 months, while the survival of those that walked daily was reduced to approximately 62 days. The results showed that A. sculptum nymphs were able to cover distances of over 100 m throughout their lifetimes, but they walked short distances at a time and constantly changed direction. This behavior indicates that ticks are not able to disperse over long distances by means of active locomotion.
Subject(s)
Amblyomma/physiology , Amblyomma/growth & development , Animals , Locomotion , Longevity , Nymph/growth & development , Nymph/physiologyABSTRACT
Ornithodoros rostratus is a South American argasid tick which importance relies on its itchy bite and potential as disease vector. They feed on a wide variety of hosts and secrete different molecules in their saliva and intestinal content that counteract host defences and help to accommodate and metabolize the relatively large quantity of blood upon feeding. The present work describes the transcriptome profile of salivary gland (SG) and midgut (MG) of O. rostratus using Illumina sequencing. A total of 8,031 contigs were assembled and assigned to different functional classes. Secreted proteins were the most abundant in the SG and accounted for ~67% of all expressed transcripts with contigs with identity to lipocalins and acid tail proteins being the most representative. On the other hand, immunity genes were upregulated in MG with a predominance of defensins and lysozymes. Only 10 transcripts in SG and 8 in MG represented ~30% of all RNA expressed in each tissue and one single contig (the acid tail protein ORN-9707) represented ~7% of all expressed contigs in SG. Results highlight the functional difference of each organ and identified the most expressed classes and contigs of O. rostratus SG and MG.
Subject(s)
Arthropod Proteins/metabolism , Ornithodoros/metabolism , Proteome/analysis , RNA-Seq/methods , Salivary Glands/metabolism , Salivary Proteins and Peptides/metabolism , Transcriptome , Animals , Arthropod Proteins/genetics , Computational Biology , Evolution, Molecular , Ornithodoros/genetics , Ornithodoros/growth & development , Phylogeny , Salivary Proteins and Peptides/geneticsABSTRACT
BACKGROUND: Over the last few decades, pyrethroid-resistant in Triatoma infestans populations have been reported, mainly on the border between Argentina and Bolivia. Understanding the genetic basis of inheritance mode and heritability of resistance to insecticides under laboratory conditions is crucial for vector management and monitoring of insecticide resistance. Currently, few studies have been performed to characterize the inheritance mode of resistance to pyrethroids in T. infestans; for this reason, the present study aims to characterize the inheritance and heritability of deltamethrin resistance in T. infestans populations from Bolivia with different toxicological profiles. METHODS: Experimental crosses were performed between a susceptible (S) colony and resistant (R) and reduced susceptibility (RS) colonies in both directions (â x â and â x â), and inheritance mode was determined based on degree of dominance (DO) and effective dominance (D(ML)). In addition, realized heritability (h(2)) was estimated based on a resistant colony, and select pressure was performed for two generations based on the diagnostic dose (10 ng. i. a. /nymph). The F1 progeny of the experimental crosses and the selection were tested by a standard insecticide resistance bioassay. RESULTS: The result for DO and D(ML) (< 1) indicates that resistance is an incompletely dominant character, and inheritance is autosomal, not sex-linked. The LD50 for F1 of âS x âR and âS x âR was 0.74 and 3.97, respectively, which is indicative of dilution effect. In the resistant colony, after selection pressure, the value of h(2) was 0.37; thus, the LD50 value increased 2.25-fold (F2) and 26.83-fold (F3) compared with the parental colony. CONCLUSION: The inheritance mode of resistance of T. infestans to deltamethrin, is autosomal and an incompletely dominant character; this is a previously known process, confirmed in the present study on T. infestans populations from Bolivia. The lethal doses (LD50) increase from one generation to another rapidly after selection pressure with deltamethrin. This suggests that resistance is an additive and cumulative factor, mainly in highly structured populations with limited dispersal capacity, such as T. infestans. This phenomenon was demonstrated for the first time for T. infestans in the present study. These results are very important for vector control strategies in problematic areas where high resistance ratios of T. infestans have been reported.