Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Front Immunol ; 15: 1366125, 2024.
Article in English | MEDLINE | ID: mdl-38715615

ABSTRACT

Introduction: Patients with the multibacillary form of leprosy can develop reactional episodes of acute inflammation, known as erythema nodosum leprosum (ENL), which are characterized by the appearance of painful cutaneous nodules and systemic symptoms. Neutrophils have been recognized to play a role in the pathogenesis of ENL, and recent global transcriptomic analysis revealed neutrophil-related processes as a signature of ENL skin lesions. Methods: In this study, we expanded this analysis to the blood compartment, comparing whole blood transcriptomics of patients with non-reactional lepromatous leprosy at diagnosis (LL, n=7) and patients with ENL before administration of anti-reactional treatment (ENL, n=15). Furthermore, a follow-up study was performed with patients experiencing an ENL episode at the time of diagnosis and after 7 days of thalidomide treatment (THAL, n=10). Validation in an independent cohort (ENL=8; LL=7) was performed by RT-qPCR. Results: An enrichment of neutrophil activation and degranulation-related genes was observed in the ENL group, with the gene for the neutrophil activation marker CD177 being the most enriched gene of ENL episode when compared to its expression in the LL group. A more pro-inflammatory transcriptome was also observed, with increased expression of genes related to innate immunity. Validation in an independent cohort indicated that S100A8 expression could discriminate ENL from LL. Supernatants of blood cells stimulated in vitro with Mycobacterium leprae sonicate showed higher levels of CD177 compared to the level of untreated cells, indicating that the leprosy bacillus can activate neutrophils expressing CD177. Of note, suggestive higher CD177 protein levels were found in the sera of patients with severe/moderate ENL episodes when compared with patients with mild episodes and LL patients, highlighting CD177 as a potential systemic marker of ENL severity that deserves future confirmation. Furthermore, a follow-up study was performed with patients at the time of ENL diagnosis and after 7 days of thalidomide treatment (THAL, n=10). Enrichment of neutrophil pathways was sustained in the transcriptomic profile of patients undergoing treatment; however, important immune targets that might be relevant to the effect of thalidomide at a systemic level, particularly NLRP6 and IL5RA, were revealed. Discussion: In conclusion, our study reinforces the key role played by neutrophils in ENL pathogenesis and shed lights on potential diagnostic candidates and novel therapeutic targets that could benefit patients with leprosy.


Subject(s)
Erythema Nodosum , Gene Expression Profiling , Leprosy, Lepromatous , Neutrophil Activation , Neutrophils , Transcriptome , Humans , Erythema Nodosum/immunology , Erythema Nodosum/blood , Leprosy, Lepromatous/immunology , Leprosy, Lepromatous/diagnosis , Leprosy, Lepromatous/blood , Adult , Male , Neutrophils/immunology , Neutrophils/metabolism , Female , Middle Aged , GPI-Linked Proteins/genetics , Thalidomide , Receptors, Cell Surface/genetics , Leprostatic Agents/therapeutic use , Leprostatic Agents/pharmacology , Young Adult , Biomarkers , Isoantigens
2.
Microbes Infect ; 26(3): 105283, 2024.
Article in English | MEDLINE | ID: mdl-38141852

ABSTRACT

Leprosy is a chronic infectious disease caused by the intracellular bacillus Mycobacterium leprae (M. leprae), which is known to infect skin macrophages and Schwann cells. Although adipose tissue is a recognized site of Mycobacterium tuberculosis infection, its role in the histopathology of leprosy was, until now, unknown. We analyzed the M. leprae capacity to infect and persist inside adipocytes, characterizing the induction of a lipolytic phenotype in adipocytes, as well as the effect of these infected cells on macrophage recruitment. We evaluated 3T3-L1-derived adipocytes, inguinal adipose tissue of SWR/J mice, and subcutaneous adipose tissue biopsies of leprosy patients. M. leprae was able to infect 3T3-L1-derived adipocytes in vitro, presenting a strong lipolytic profile after infection, followed by significant cholesterol efflux. This lipolytic phenotype was replicated in vivo by M. leprae injection into mice inguinal adipose tissue. Furthermore, M. leprae was detected inside crown-like structures in the subcutaneous adipose tissue of multibacillary patients. These data indicate that subcutaneous adipose tissue could be an important site of infection, and probably persistence, for M. leprae, being involved in the modulation of the innate immune control in leprosy via the release of cholesterol, MCP-1, and adiponectin.


Subject(s)
Leprosy , Mycobacterium leprae , Mice , Animals , Humans , Mycobacterium leprae/physiology , Lipolysis , Adipocytes/pathology , Immunity , Cholesterol
3.
Front Med (Lausanne) ; 9: 899998, 2022.
Article in English | MEDLINE | ID: mdl-35733868

ABSTRACT

In leprosy patients, acute inflammatory episodes, known as erythema nodosum leprosum (ENL), are responsible for high morbidity and tissue damage that occur during the course of Mycobacterium leprae infection. In a previous study, we showed evidence implicating DNA-sensing via TLR9 as an important inflammatory pathway in ENL. A likely important consequence of TLR9 pathway activation is the production of type I interferons (IFN-I) by plasmacytoid dendritic cells (pDCs), also implicated in the pathogenesis of several chronic inflammatory diseases. In this study, we investigated whether the IFN-I pathway is activated during ENL. Blood samples and skin lesions from multibacillary patients diagnosed with ENL were collected and the expression of genes of the IFN-I pathway and interferon-stimulated genes were compared with samples collected from non-reactional multibacillary (NR) patients. Whole blood RNAseq analysis suggested higher activation of the IFN-I pathway in ENL patients, confirmed by RT-qPCR. Likewise, significantly higher mRNA levels of IFN-I-related genes were detected in ENL skin biopsies when compared to NR patient lesions. During thalidomide administration, the drug of choice for ENL treatment, a decrease in the mRNA and protein levels of some of these genes both in the skin and blood was observed. Indeed, in vitro assays showed that thalidomide was able to block the secretion of IFN-I by peripheral blood mononuclear cells in response to M. leprae sonicate or CpG-A, a TLR9 ligand. Finally, the decreased frequencies of peripheral pDCs in ENL patients, along with the higher TLR9 expression in ENL pDCs and the enrichment of CD123+ cells in ENL skin lesions, suggest the involvement of these cells as IFN-I producers in this type of reaction. Taken together, our data point to the involvement of the pDC/type I IFN pathway in the pathogenesis of ENL, opening new avenues in identifying biomarkers for early diagnosis and new therapeutic targets for the better management of this reactional episode.

4.
Front Microbiol ; 13: 918009, 2022.
Article in English | MEDLINE | ID: mdl-35722339

ABSTRACT

The initial infection by the obligate intracellular bacillus Mycobacterium leprae evolves to leprosy in a small subset of the infected individuals. Transmission is believed to occur mainly by exposure to bacilli present in aerosols expelled by infected individuals with high bacillary load. Mycobacterium leprae-specific DNA has been detected in the blood of asymptomatic household contacts of leprosy patients years before active disease onset, suggesting that, following infection, the bacterium reaches the lymphatic drainage and the blood of at least some individuals. The lower temperature and availability of protected microenvironments may provide the initial conditions for the survival of the bacillus in the airways and skin. A subset of skin-resident macrophages and the Schwann cells of peripheral nerves, two M. leprae permissive cells, may protect M. leprae from effector cells in the initial phase of the infection. The interaction of M. leprae with these cells induces metabolic changes, including the formation of lipid droplets, that are associated with macrophage M2 phenotype and the production of mediators that facilitate the differentiation of specific T cells for M. leprae-expressed antigens to a memory regulatory phenotype. Here, we discuss the possible initials steps of M. leprae infection that may lead to active disease onset, mainly focusing on events prior to the manifestation of the established clinical forms of leprosy. We hypothesize that the progressive differentiation of T cells to the Tregs phenotype inhibits effector function against the bacillus, allowing an increase in the bacillary load and evolution of the infection to active disease. Epigenetic and metabolic mechanisms described in other chronic inflammatory diseases are evaluated for potential application to the understanding of leprosy pathogenesis. A potential role for post-exposure prophylaxis of leprosy in reducing M. leprae-induced anti-inflammatory mediators and, in consequence, Treg/T effector ratios is proposed.

5.
Front Immunol ; 12: 727580, 2021.
Article in English | MEDLINE | ID: mdl-34621273

ABSTRACT

Despite being treatable, leprosy still represents a major public health problem, and many mechanisms that drive leprosy immunopathogenesis still need to be elucidated. B cells play important roles in immune defense, being classified in different subgroups that present distinct roles in the immune response. Here, the profile of B cell subpopulations in peripheral blood of patients with paucibacillary (TT/BT), multibacillary (LL/BL) and erythema nodosum leprosum was analyzed. B cell subpopulations (memory, transition, plasmablasts, and mature B cells) and levels of IgG were analyzed by flow cytometry and ELISA, respectively. It was observed that Mycobacterium leprae infection can alter the proportions of B cell subpopulations (increase of mature and decrease of memory B cells) in patients affected by leprosy. This modulation is associated with an increase in total IgG and the patient's clinical condition. Circulating B cells may be acting in the modulation of the immune response in patients with various forms of leprosy, which may reflect the patient's ability to respond to M. leprae.


Subject(s)
B-Lymphocytes/immunology , Leprosy, Multibacillary/immunology , Adult , Female , Humans , Immunoglobulin G/blood , Immunologic Memory , Leprosy, Multibacillary/blood , Male , Middle Aged , Phenotype
6.
Front Immunol ; 12: 657449, 2021.
Article in English | MEDLINE | ID: mdl-34456901

ABSTRACT

The respiratory tract is considered the main port of entry of Mycobacterium leprae, the causative agent of leprosy. However, the great majority of individuals exposed to the leprosy bacillus will never manifest the disease due to their capacity to develop protective immunity. Besides acting as a physical barrier, airway epithelium cells are recognized as key players by initiating a local innate immune response that orchestrates subsequent adaptive immunity to control airborne infections. However, to date, studies exploring the interaction of M. leprae with the respiratory epithelium have been scarce. In this work, the capacity of M. leprae to immune activate human alveolar epithelial cells was investigated, demonstrating that M. leprae-infected A549 cells secrete significantly increased IL-8 that is dependent on NF-κB activation. M. leprae was also able to induce IL-8 production in human primary nasal epithelial cells. M. leprae-treated A549 cells also showed higher expression levels of human ß-defensin-2 (hßD-2), MCP-1, MHC-II and the co-stimulatory molecule CD80. Furthermore, the TLR-9 antagonist inhibited both the secretion of IL-8 and NF-κB activation in response to M. leprae, indicating that bacterial DNA sensing by this Toll-like receptor constitutes an important innate immune pathway activated by the pathogen. Finally, evidence is presented suggesting that extracellular DNA molecules anchored to Hlp, a histone-like protein present on the M. leprae surface, constitute major TLR-9 ligands triggering this pathway. The ability of M. leprae to immune activate respiratory epithelial cells herein demonstrated may represent a very early event during infection that could possibly be essential to the generation of a protective response.


Subject(s)
Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/metabolism , Immunity, Innate , Leprosy/immunology , Leprosy/metabolism , Mycobacterium leprae/immunology , Toll-Like Receptor 9/metabolism , A549 Cells , Biomarkers , Cells, Cultured , Histones/metabolism , Host-Pathogen Interactions/immunology , Humans , Immunomodulation , Leprosy/microbiology , NF-kappa B/metabolism
7.
Immunol Rev ; 301(1): 193-208, 2021 05.
Article in English | MEDLINE | ID: mdl-33913182

ABSTRACT

Leprosy is a much-feared incapacitating infectious disease caused by Mycobacterium leprae or M lepromatosis, annually affecting roughly 200,000 people worldwide. During host-pathogen interaction, M leprae subverts the immune response, leading to development of disease. Throughout the last few decades, the impact of energy metabolism on the control of intracellular pathogens and leukocytic differentiation has become more evident. Mitochondria play a key role in regulating newly-discovered immune signaling pathways by controlling redox metabolism and the flow of energy besides activating inflammasome, xenophagy, and apoptosis. Likewise, this organelle, whose origin is probably an alphaproteobacterium, directly controls the intracellular pathogens attempting to invade its niche, a feature conquered at the expense of billions of years of coevolution. In the present review, we discuss the role of reduced host cell mitochondrial activity during M leprae infection and the consequential fates of M leprae and host innate immunity. Conceivably, inhibition of mitochondrial energy metabolism emerges as an overlooked and novel mechanism developed by M leprae to evade xenophagy and the host immune response.


Subject(s)
Leprosy , Mycobacterium leprae , Host-Pathogen Interactions , Humans , Immunity, Innate , Mitochondria
8.
s.l; s.n; 2021. 1 - 15 p.
Non-conventional in English | CONASS, Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1353414

ABSTRACT

The respiratory tract is considered the main port of entry of Mycobacterium leprae, the causative agent of leprosy. However, the great majority of individuals exposed to the leprosy bacillus will never manifest the disease due to their capacity to develop protective immunity. Besides acting as a physical barrier, airway epithelium cells are recognized as key players by initiating a local innate immune response that orchestrates subsequent adaptive immunity to control airborne infections. However, to date, studies exploring the interaction of M. leprae with the respiratory epithelium have been scarce. In this work, the capacity of M. leprae to immune activate human alveolar epithelial cells was investigated, demonstrating that M. leprae-infected A549 cells secrete significantly increased IL-8 that is dependent on NF-kB activation. M. leprae was also able to induce IL-8 production in human primary nasal epithelial cells. M. leprae-treated A549 cells also showed higher expression levels of human b-defensin-2 (hbD-2), MCP-1, MHC-II and the co-stimulatory molecule CD80. Furthermore, the TLR-9 antagonist inhibited both the secretion of IL-8 and NF-kB activation in response to M. leprae, indicating that bacterial DNA sensing by this Toll-like receptor constitutes an important innate immune pathway activated by the pathogen. Finally, evidence is presented suggesting that extracellular DNA molecules anchored to Hlp, a histone-like protein present on the M. leprae surface, constitute major TLR-9 ligands triggering this pathway. The ability of M. leprae to immune activate respiratory epithelial cells herein demonstrated may represent a very early event during infection that could possibly be essential to the generation of a protective response.(AU)


Subject(s)
Humans , Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/metabolism , Leprosy/immunology , Leprosy/metabolism , Mycobacterium leprae/immunology , Toll-Like Receptors/metabolism , Immunity, Innate
9.
Mem Inst Oswaldo Cruz ; 115: e200075, 2020.
Article in English | MEDLINE | ID: mdl-32696914

ABSTRACT

BACKGROUND: Although Mycobacterium leprae (ML) is well characterised as the causative agent of leprosy, the pathophysiological mechanisms underlying peripheral nerve damage still need further understanding. In vitro and in vivo studies have yielded insights into molecular mechanisms of ML interaction with Schwann cells (SC), indicating the regulation of genes and proteins crucial to neural plasticity. OBJECTIVES: We aimed to investigate the effect of ML on neurotrophins expression in human SC (hSC) and mice sciatic nerves to better understand their role in leprosy neuropathy, and aiming to contribute to future therapeutic approaches. METHODS: We evaluated mRNA and protein expression of BDNF, NGF, NT-3, NT-4 in hSC from amputation nerve fragments, as well as in athymic nude mice, infected by ML for eight months. FINDINGS AND MAIN CONCLUSIONS: Our in vitro results showed a trend to decline in NGF and BDNF mRNA in ML-treated hSC, compared to controls. The immunodetection of BDNF and NT-4 was significantly downregulated in ML-treated hSC. Conversely, ML-infected mice demonstrated upregulation of NT-3, compared to non-infected animals. Our findings indicate that ML may be involved in neurotrophins regulation, suggesting that a pathogen-related imbalance of these growth factors may have a role in the neural impairment of leprosy.


Subject(s)
Mycobacterium leprae , Nerve Growth Factors/metabolism , Schwann Cells/metabolism , Sciatic Nerve/metabolism , Animals , Humans , Mice , Mice, Nude
10.
F1000Res ; 92020.
Article in English | MEDLINE | ID: mdl-32051758

ABSTRACT

Chronic infection by the obligate intracellular pathogen Mycobacterium leprae may lead to the development of leprosy. Of note, in the lepromatous clinical form of the disease, failure of the immune system to constrain infection allows the pathogen to reproduce to very high numbers with minimal clinical signs, favoring transmission. The bacillus can modulate cellular metabolism to support its survival, and these changes directly influence immune responses, leading to host tolerance, permanent disease, and dissemination. Among the metabolic changes, upregulation of cholesterol, phospholipids, and fatty acid biosynthesis is particularly important, as it leads to lipid accumulation in the host cells (macrophages and Schwann cells) in the form of lipid droplets, which are sites of polyunsaturated fatty acid-derived lipid mediator biosynthesis that modulate the inflammatory and immune responses. In Schwann cells, energy metabolism is also subverted to support a lipogenic environment. Furthermore, effects on tryptophan and iron metabolisms favor pathogen survival with moderate tissue damage. This review discusses the implications of metabolic changes on the course of M. leprae infection and host immune response and emphasizes the induction of regulatory T cells, which may play a pivotal role in immune modulation in leprosy.


Subject(s)
Leprosy , Cholesterol , Disease Progression , Humans , Mycobacterium leprae , Schwann Cells
11.
Cell Microbiol ; 22(1): e13128, 2020 01.
Article in English | MEDLINE | ID: mdl-31652371

ABSTRACT

Leprosy neuropathy is a chronic degenerative infectious disorder of the peripheral nerve caused by the intracellular obligate pathogen Mycobacterium leprae (M. leprae). Among all nonneuronal cells that constitute the nerve, Schwann cells are remarkable in supporting M. leprae persistence intracellularly. Notably, the success of leprosy infection has been attributed to its ability in inducing the demyelination phenotype after contacting myelinated fibres. However, the exact role M. leprae plays during the ongoing process of myelin breakdown is entirely unknown. Here, we provided evidence showing an unexpected predilection of leprosy pathogen for degenerating myelin ovoids inside Schwann cells. In addition, M. leprae infection accelerated the rate of myelin breakdown and clearance leading to increased formation of lipid droplets, by modulating a set of regulatory genes involved in myelin maintenance, autophagy, and lipid storage. Remarkably, the blockage of myelin breakdown significantly reduced M. leprae content, demonstrating a new unpredictable role of myelin dismantling favouring M. leprae physiology. Collectively, our study provides novel evidence that may explain the demyelination phenotype as an evolutionarily conserved mechanism used by leprosy pathogen to persist longer in the peripheral nerve.


Subject(s)
Mycobacterium leprae/physiology , Myelin Sheath/metabolism , Schwann Cells/microbiology , Animals , Cells, Cultured , Humans , Leprosy/complications , Leprosy/microbiology , Male , Mice , Mice, Inbred BALB C , Mycobacterium leprae/pathogenicity , Myelin Sheath/microbiology
12.
Rio de Janeiro; s.n; 2020. 11 p. ilus.
Non-conventional in English | HANSEN, Sec. Est. Saúde SP, CONASS, Hanseníase Leprosy, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1146417

ABSTRACT

BACKGROUND: Although Mycobacterium leprae (ML) is well characterised as the causative agent of leprosy, the pathophysiological mechanisms underlying peripheral nerve damage still need further understanding. In vitro and in vivo studies have yielded insights into molecular mechanisms of ML interaction with Schwann cells (SC), indicating the regulation of genes and proteins crucial to neural plasticity. OBJECTIVES: We aimed to investigate the effect of ML on neurotrophins expression in human SC (hSC) and mice sciatic nerves to better understand their role in leprosy neuropathy, and aiming to contribute to future therapeutic approaches. METHODS: We evaluated mRNA and protein expression of BDNF, NGF, NT-3, NT-4 in hSC from amputation nerve fragments, as well as in athymic nude mice, infected by ML for eight months. FINDINGS and MAIN CONCLUSIONS: Our in vitro results showed a trend to decline in NGF and BDNF mRNA in ML-treated hSC, compared to controls. The immunodetection of BDNF and NT-4 was significantly downregulated in ML-treated hSC. Conversely, ML-infected mice demonstrated upregulation of NT-3, compared to non-infected animals. Our findings indicate that ML may be involved in neurotrophins regulation, suggesting that a pathogen-related imbalance of these growth factors may have a role in the neural impairment of leprosy(AU).


Subject(s)
Humans , Animals , Mice , Schwann Cells/immunology , Mycobacterium leprae/immunology , Peripheral Nervous System Diseases , Leprosy/complications , Nerve Growth Factors
13.
s.l; s.n; 2020. 8 p. graf.
Non-conventional in English | HANSEN, Sec. Est. Saúde SP, Hanseníase Leprosy | ID: biblio-1102410

ABSTRACT

Leprosy neuropathy is a chronic degenerative infectious disorder of the peripheral nerve caused by the intracellular obligate pathogen Mycobacterium leprae (M. leprae). Among all nonneuronal cells that constitute the nerve, Schwann cells are remarkable in supporting M. leprae persistence intracellularly. Notably, the success of leprosy infection has been attributed to its ability in inducing the demyelination phenotype after contacting myelinated fibres. However, the exact role M. leprae plays during the ongoing process of myelin breakdown is entirely unknown. Here, we provided evidence showing an unexpected predilection of leprosy pathogen for degenerating myelin ovoids inside Schwann cells. In addition, M. leprae infection accelerated the rate of myelin breakdown and clearance leading to increased formation of lipid droplets, by modulating a set of regulatory genes involved in myelin maintenance, autophagy, and lipid storage. Remarkably, the blockage of myelin breakdown significantly reduced M. leprae content, demonstrating a new unpredictable role of myelin dismantling favouring M. leprae physiology. Collectively, our study provides novel evidence that may explain the demyelination phenotype as an evolutionarily conserved mechanism used by leprosy pathogen to persist longer in the peripheral nerve.


Subject(s)
Schwann Cells/microbiology , Peripheral Nervous System Diseases/metabolism , Mycobacterium leprae/pathogenicity , Myelin Sheath/microbiology , Demyelinating Diseases/microbiology , Leprosy/complications
14.
s.l; s.n; 2020. 23 p. ilus, tab, graf.
Non-conventional in English | Sec. Est. Saúde SP, HANSEN, Hanseníase Leprosy, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1102413

ABSTRACT

The changes in host lipid metabolism during leprosy have been correlated to fatty acid alterations in serum and with high-density lipoprotein (HDL) dysfunctionality. This is most evident in multibacillary leprosy patients (Mb), who present an accumulation of host lipids in Schwann cells and macrophages. This accumulation in host peripheral tissues should be withdrawn by HDL, but it is unclear why this lipoprotein from Mb patients loses this function. To investigate HDL metabolism changes during the course of leprosy, HDL composition and functionality of Mb, Pb patients (paucibacillary) pre- or post-multidrug therapy (MDT) and HC (healthy controls) were analyzed. Mb pre-MDT patients presented lower levels of HDL-cholesterol compared to HC. Moreover, Ultra Performance Liquid Chromatography-Mass Spectrometry lipidomics of HDL showed an altered lipid profile of Mb pre-MDT compared to HC and Pb patients. In functional tests, HDL from Mb pre-MDT patients showed impaired anti-inflammatory and anti-oxidative stress activities and a lower cholesterol acceptor capacity compared to other groups. Mb pre-MDT showed lower concentrations of ApoA-I (apolipoprotein A-I), the major HDL protein, when compared to HC, with a post-MDT recovery. Changes in ApoA-I expression could also be observed in M. leprae-infected hepatic cells. The presence of bacilli in the liver of a Mb patient, along with cell damage, indicated hepatic involvement during leprosy, which may reflect on ApoA-I expression. Together, altered compositional and functional profiles observed on HDL of Mb patients can explain metabolic and physiological changes observed in Mb leprosy, contributing to a better understanding of its pathogenesis. AUTHOR SUMMARY: Leprosy is a chronic disease caused by Mycobacterium leprae, which causes lesions on the skin and peripheral nerves. Some patients do not present an efficient immune response and have a disseminated infection (multibacillary, Mb). Mb patients have lipid accumulation in infected tissues that is important for microorganism survival. High-density lipoprotein (HDL) is composed of proteins and lipids and is produced in the liver. It removes excess of lipids from peripheral tissues and presents anti-inflammatory activity; however, these activities are not being properly performed in leprosy. To understand more about HDL metabolism on leprosy, the chemical composition and functionality of HDL from leprosy patients were analyzed before and after treatment with antibiotics (multidrug therapy, MDT). It was observed that HDL has an altered lipid composition in Mb patients before MDT, which may lead to an impairment of its functions. Apolipoprotein A-I (ApoA-I), the main HDL protein, seems to be highly affected during infection. These functions can be slightly recovered after MDT, but not in the levels of healthy individuals. Our data open new perspectives to elucidate the modulation of lipid metabolism in leprosy and consequently to prevent disease complications.


Subject(s)
Leprosy/complications , Leprosy/metabolism , Lipoproteins, HDL/metabolism , Mycobacterium leprae/pathogenicity , Liver Diseases
15.
mBio ; 10(6)2019 12 17.
Article in English | MEDLINE | ID: mdl-31848273

ABSTRACT

New approaches are needed to control leprosy, but understanding of the biology of the causative agent Mycobacterium leprae remains rudimentary, principally because the pathogen cannot be grown in axenic culture. Here, we applied 13C isotopomer analysis to measure carbon metabolism of M. leprae in its primary host cell, the Schwann cell. We compared the results of this analysis with those of a related pathogen, Mycobacterium tuberculosis, growing in its primary host cell, the macrophage. Using 13C isotopomer analysis with glucose as the tracer, we show that whereas M. tuberculosis imports most of its amino acids directly from the host macrophage, M. leprae utilizes host glucose pools as the carbon source to biosynthesize the majority of its amino acids. Our analysis highlights the anaplerotic enzyme phosphoenolpyruvate carboxylase required for this intracellular diet of M. leprae, identifying this enzyme as a potential antileprosy drug target.IMPORTANCE Leprosy remains a major problem in the world today, particularly affecting the poorest and most disadvantaged sections of society in the least developed countries of the world. The long-term aim of research is to develop new treatments and vaccines, and these aims are currently hampered by our inability to grow the pathogen in axenic culture. In this study, we probed the metabolism of M. leprae while it is surviving and replicating inside its primary host cell, the Schwann cell, and compared it to a related pathogen, M. tuberculosis, replicating in macrophages. Our analysis revealed that unlike M. tuberculosis, M. leprae utilized host glucose as a carbon source and that it biosynthesized its own amino acids, rather than importing them from its host cell. We demonstrated that the enzyme phosphoenolpyruvate carboxylase plays a crucial role in glucose catabolism in M. leprae Our findings provide the first metabolic signature of M. leprae in the host Schwann cell and identify novel avenues for the development of antileprosy drugs.


Subject(s)
Carbon/metabolism , Glucose/metabolism , Mycobacterium leprae/physiology , Schwann Cells/metabolism , Schwann Cells/microbiology , Carbohydrate Metabolism , Cell Line , Host-Pathogen Interactions , Humans , Leprosy/metabolism , Leprosy/microbiology , Macrophages/metabolism , Macrophages/microbiology , Metabolic Networks and Pathways
16.
PLoS Negl Trop Dis ; 13(9): e0007368, 2019 09.
Article in English | MEDLINE | ID: mdl-31504035

ABSTRACT

Up to 50% of patients with the multibacillary form of leprosy are expected to develop acute systemic inflammatory episodes known as type 2 reactions (T2R), thus aggravating their clinical status. Thalidomide rapidly improves T2R symptoms. But, due to its restricted use worldwide, novel alternative therapies are urgently needed. The T2R triggering mechanisms and immune-inflammatory pathways involved in its pathology remain ill defined. In a recent report, we defined the recognition of nucleic acids by TLR9 as a major innate immunity pathway that is activated during T2R. DNA recognition has been described as a major inflammatory pathway in several autoimmune diseases, and neutrophil DNA extracellular traps (NETs) have been shown to be a prime source of endogenous DNA. Considering that neutrophil abundance is a marked characteristic of T2R lesions, the objective of this study was to investigate NETs production in T2R patients based on the hypothesis that the excessive NETs formation would play a major role in T2R pathogenesis. Abundant NETs were found in T2R skin lesions, and increased spontaneous NETs formation was observed in T2R peripheral neutrophils. Both the M. leprae whole-cell sonicate and the CpG-Hlp complex, mimicking a mycobacterial TLR9 ligand, were able to induce NETs production in vitro. Moreover, TLR9 expression was shown to be higher in T2R neutrophils, suggesting that DNA recognition via TLR9 may be one of the pathways triggering this process during T2R. Finally, treatment of T2R patients with thalidomide for 7 consecutive days resulted in a decrease in all of the evaluated in vivo and ex vivo NETosis parameters. Altogether, our findings shed light on the pathogenesis of T2R, which, it is hoped, will contribute to the emergence of novel alternative therapies and the identification of prognostic reactional markers in the near future.


Subject(s)
Extracellular Traps/immunology , Immunity, Innate , Leprosy/immunology , Adult , Aged , Aged, 80 and over , Autoimmune Diseases/immunology , Autoimmune Diseases/microbiology , Female , Humans , Inflammation/immunology , Inflammation/pathology , Leprosy/drug therapy , Leprosy/pathology , Male , Middle Aged , Mycobacterium leprae/immunology , Mycobacterium leprae/pathogenicity , Neutrophils/pathology , Thalidomide/administration & dosage , Thalidomide/therapeutic use
17.
Mem Inst Oswaldo Cruz ; 114: e180579, 2019.
Article in English | MEDLINE | ID: mdl-30970080

ABSTRACT

BACKGROUND: CD64 (FcγR1) is a high-affinity receptor for monomeric IgG1 and IgG3. Circulating neutrophils express very low amounts of CD64 on their surface. OBJECTIVES: Our primary aim was to investigate the utility of neutrophil CD64 surface expression as a biomarker of active pulmonary tuberculosis (TB). We hypothesised that elevated neutrophil CD64 expression in TB infection would be associated with interferon gamma (IFN-γ) as an inducer of CD64 expression. METHODS: The expression level of CD64 per neutrophil (PMN CD64 index) was quantitatively measured with flow cytometry using a Leuko64 kit in samples from patients with TB and latent TB infection (LTBI) as well as healthy controls, as part of a prospective cohort study in Brazil. FINDINGS: The PMN CD64 index in patients with TB was higher than that in healthy controls and LTBI. Receiver operating characteristic curve analyses determined that the PMN CD64 index could discriminate patients with TB from those with LTBI and healthy individuals. PMN CD64 index levels returned to baseline levels after treatment. CONCLUSIONS: The positive regulation of CD64 expression in circulating neutrophils of patients with active TB could represent an additional biomarker for diagnosis of active TB and could be used for monitoring individuals with LTBI before progression of TB disease.


Subject(s)
Latent Tuberculosis/diagnosis , Neutrophils/immunology , Receptors, IgG/immunology , Adult , Biomarkers/analysis , Case-Control Studies , Female , Flow Cytometry , Humans , Interferon-gamma Release Tests , Latent Tuberculosis/immunology , Male , Middle Aged , Prospective Studies , ROC Curve , Receptors, IgG/metabolism , Sensitivity and Specificity
18.
Mem. Inst. Oswaldo Cruz ; 114: e180579, 2019. tab, graf
Article in English | LILACS | ID: biblio-1002686

ABSTRACT

BACKGROUND CD64 (FcγR1) is a high-affinity receptor for monomeric IgG1 and IgG3. Circulating neutrophils express very low amounts of CD64 on their surface. OBJECTIVES Our primary aim was to investigate the utility of neutrophil CD64 surface expression as a biomarker of active pulmonary tuberculosis (TB). We hypothesised that elevated neutrophil CD64 expression in TB infection would be associated with interferon gamma (IFN-γ) as an inducer of CD64 expression. METHODS The expression level of CD64 per neutrophil (PMN CD64 index) was quantitatively measured with flow cytometry using a Leuko64 kit in samples from patients with TB and latent TB infection (LTBI) as well as healthy controls, as part of a prospective cohort study in Brazil. FINDINGS The PMN CD64 index in patients with TB was higher than that in healthy controls and LTBI. Receiver operating characteristic curve analyses determined that the PMN CD64 index could discriminate patients with TB from those with LTBI and healthy individuals. PMN CD64 index levels returned to baseline levels after treatment. CONCLUSIONS The positive regulation of CD64 expression in circulating neutrophils of patients with active TB could represent an additional biomarker for diagnosis of active TB and could be used for monitoring individuals with LTBI before progression of TB disease.


Subject(s)
Humans , Biomarkers/analysis , Latent Tuberculosis/diagnosis , Latent Tuberculosis/immunology , Flow Cytometry , Case-Control Studies , Prospective Studies , Interferon-gamma Release Tests , Neutrophils/immunology
19.
PLoS Negl Trop Dis ; 12(12): e0007001, 2018 12.
Article in English | MEDLINE | ID: mdl-30566440

ABSTRACT

Leprosy is an infectious disease caused by Mycobacterium leprae and frequently resulting in irreversible deformities and disabilities. Ticks play an important role in infectious disease transmission due to their low host specificity, worldwide distribution, and the biological ability to support transovarial transmission of a wide spectrum of pathogens, including viruses, bacteria and protozoa. To investigate a possible role for ticks as vectors of leprosy, we assessed transovarial transmission of M. leprae in artificially-fed adult female Amblyomma sculptum ticks, and infection and growth of M. leprae in tick cell lines. Our results revealed M. leprae RNA and antigens persisting in the midgut and present in the ovaries of adult female A. sculptum at least 2 days after oral infection, and present in their progeny (eggs and larvae), which demonstrates the occurrence of transovarial transmission of this pathogen. Infected tick larvae were able to inoculate viable bacilli during blood-feeding on a rabbit. Moreover, following inoculation with M. leprae, the Ixodes scapularis embryo-derived tick cell line IDE8 supported a detectable increase in the number of bacilli for at least 20 days, presenting a doubling time of approximately 12 days. As far as we know, this is the first in vitro cellular system able to promote growth of M. leprae. Finally, we successfully transformed a clinical M. leprae isolate by inserting the reporter plasmid pCHERRY3; transformed bacteria infected and grew in IDE8 cells over a 2-month period. Taken together, our data not only support the hypothesis that ticks may have the potential to act as a reservoir and/or vector of leprosy, but also suggest the feasibility of technological development of tick cell lines as a tool for large-scale production of M. leprae bacteria, as well as describing for the first time a method for their transformation.


Subject(s)
Arachnid Vectors/physiology , Ixodes/microbiology , Ixodidae/microbiology , Leprosy/transmission , Mycobacterium leprae/physiology , Animals , Arachnid Vectors/microbiology , Cell Line , Female , Humans , Ixodes/physiology , Ixodidae/physiology , Leprosy/microbiology , Male , Mycobacterium leprae/genetics , Rabbits
20.
PLoS Pathog ; 14(7): e1007151, 2018 07.
Article in English | MEDLINE | ID: mdl-29979790

ABSTRACT

Mycobacterium leprae, an obligate intracellular bacillus, infects Schwann cells (SCs), leading to peripheral nerve damage, the most severe leprosy symptom. In the present study, we revisited the involvement of phenolic glycolipid I (PGL I), an abundant, private, surface M. leprae molecule, in M. leprae-SC interaction by using a recombinant strain of M. bovis BCG engineered to express this glycolipid. We demonstrate that PGL I is essential for bacterial adhesion and SC internalization. We also show that live mycobacterium-producing PGL I induces the expression of the endocytic mannose receptor (MR/CD206) in infected cells in a peroxisome proliferator-activated receptor gamma (PPARγ)-dependent manner. Of note, blocking mannose recognition decreased bacterial entry and survival, pointing to a role for this alternative recognition pathway in bacterial pathogenesis in the nerve. Moreover, an active crosstalk between CD206 and the nuclear receptor PPARγ was detected that led to the induction of lipid droplets (LDs) formation and prostaglandin E2 (PGE2), previously described as fundamental players in bacterial pathogenesis. Finally, this pathway was shown to induce IL-8 secretion. Altogether, our study provides evidence that the entry of live M. leprae through PGL I recognition modulates the SC phenotype, favoring intracellular bacterial persistence with the concomitant secretion of inflammatory mediators that may ultimately be involved in neuroinflammation.


Subject(s)
Antigens, Bacterial/metabolism , Glycolipids/metabolism , Lectins, C-Type/metabolism , Leprosy/metabolism , Mannose-Binding Lectins/metabolism , PPAR gamma/metabolism , Receptors, Cell Surface/metabolism , Schwann Cells/virology , Humans , Mannose Receptor , Mycobacterium leprae/metabolism , Receptor Cross-Talk/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...