Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Chemosphere ; 353: 141673, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462176

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are widespread across the environment and humans are unavoidably and constantly exposed to them. As lipophilic contaminants, these substances tend to accumulate in fatty tissues as adipose tissue and exposure to these endocrine disruptors has been associated with severe health hazards including prevalence and incidence of obesity. Previous studies have shown significantly higher concentrations of PAHs in adipose tissue compared to other human samples, such as urine and plasma, which are typically used for PAHs assessment. Therefore, conducting biomonitoring studies in adipose tissue is essential, although such studies are currently limited. In this study, the concentrations of 18 PAHs were measured in subcutaneous (scAT) and visceral adipose tissue (vAT) of 188 Portuguese obese females by high performance liquid chromatography (HPLC). The obtained results were then associated with the patient's data namely: 13 clinical, 4 social, and 42 biochemical parameters. Seventeen PAHs were present, at least, in one sample of both scAT and vAT, most of them with detection frequencies higher than 80%. Indeno [1,2,3-cd]pyrene (InP) was the only PAH never detected. Overall higher concentrations of PAHs were observed in scAT. Median concentrations of ∑PAHs were 32.2 ± 10.0 ng/g in scAT and 24.6 ± 10.0 ng/g in vAT. Thirty-six significant associations (7 with social, 18 with clinical, and 11 with biochemical parameters), including 21 Spearman's correlations were identified (12 positive and 9 negative correlations). Indicating the potential effects of PAHs on various parameters such as obesity evolution, body fat, number of adipocytes, total cholesterol, alkaline phosphatase, macrominerals, uric acid, sedimentation velocity, and luteinizing hormone. This study underscores the significance of biomonitoring PAH levels in adipose tissue and their potential effects on metabolic health. Further research is essential to fully comprehend the metabolic implications of PAHs in the human body and to develop strategies for obesity prevention and treatment.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Humans , Female , Polycyclic Aromatic Hydrocarbons/analysis , Bioaccumulation , Adipose Tissue/chemistry , Obesity , Luteinizing Hormone , Environmental Monitoring
2.
Front Public Health ; 11: 1277355, 2023.
Article in English | MEDLINE | ID: mdl-38026295

ABSTRACT

Introduction: Empowerment lifestyle programs are needed to reduce the risk of hypertension. Our study compared the effectiveness of two empowerment-based approaches toward blood pressure (BP) reduction: salt reduction-specific program vs. healthy lifestyle general program. Methods: Three hundred and eleven adults (median age of 44 years, IQR 34-54 years) were randomly assigned to a salt reduction (n = 147) or a healthy lifestyle program (n = 164). The outcome measures were urinary sodium (Na+) and potassium (K+) excretion, systolic (SBP) and diastolic (DBP) blood pressure, weight, and waist circumference. Results: There were no significant differences in primary and secondary outcomes between the two program groups. When comparing each program to baseline, the program focused on salt reduction was effective in lowering BP following a 12-week intervention with a mean change of -2.5 mm Hg in SBP (95% CI, -4.1 to -0.8) and - 2.7 mm Hg in DBP (95% CI, -3.8 to -1.5) in the intention-to-treat (ITT) analysis. In the complete-case (CC) analysis, the mean change was -2.1 mm Hg in SBP (95% CI, -3.7 to -0.5) and - 2.3 mm Hg in DBP (95% CI, -3.4 to -1.1). This effect increases in subjects with high-normal BP or hypertension [SBP - 7.9 mm Hg (95% CI, -12.5 to -3.3); DBP - 7.3 mm Hg (95% CI, -10.2 to -4.4)]. The healthy lifestyle group also exhibited BP improvements after 12 weeks; however, the changes were less pronounced compared to the salt reduction group and were observed only for DBP [mean change of -1.5 mm Hg (95% CI, -2.6 to -0.4) in ITT analysis and - 1.4 mm Hg (95% CI, -2.4 to -0.3) in CC analysis, relative to baseline]. Overall, improvements in Na+/K+ ratio, weight, and Mediterranean diet adherence resulted in clinically significant SBP decreases. Importantly, BP reduction is attributed to improved dietary quality, rather than being solely linked to changes in the Na+/K+ ratio. Conclusion: Salt-focused programs are effective public health tools mainly in managing individuals at high risk of hypertension. Nevertheless, in general, empowerment-based approaches are important strategies for lowering BP, by promoting health literacy that culminates in adherence to the Mediterranean diet and weight reduction.


Subject(s)
Hypertension , Adult , Humans , Middle Aged , Blood Pressure , Hypertension/prevention & control , Sodium Chloride, Dietary , Outcome Assessment, Health Care
3.
Biology (Basel) ; 12(10)2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37887061

ABSTRACT

Cobalt (Co), copper (Cu), manganese (Mn), molybdenum (Mo), and zinc (Zn) are essential trace elements (ETEs) and important cofactors for intermediary metabolism or redox balance. These ETEs are crucial during pregnancy, their role on specific pregnancy outcomes is largely unknown. This prospective study (#NCT04010708) aimed to assess urinary levels of these ETEs in pregnancy and to evaluate their association with pregnancy outcomes. First trimester pregnant women of Porto and Lisbon provided a random spot urine sample, and sociodemographic and lifestyle data. Clinical data were obtained from clinical records. Urinary ETEs were quantified by inductively coupled plasma mass spectrometry (ICP-MS). A total of 635 mother:child pairs were included. Having urinary Zn levels above the 50th percentile (P50) was an independent risk factor for pre-eclampsia (PE) (aOR [95% CI]: 5.350 [1.044-27.423], p = 0.044). Urinary Zn levels above the P50 decreased the risk of small for gestational age (SGA) birth head circumference (aOR [95% CI]: 0.315 [0.113-0.883], p = 0.028), but it increased the risk SGA length (aOR [95% CI]: 2.531 [1.057-6.062], p = 0.037). This study may provide valuable information for public health policies related to prenatal nutrition, while informing future efforts to de-fine urinary reference intervals for ETEs in pregnant women.

4.
Environ Res ; 239(Pt 1): 117337, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37806478

ABSTRACT

Organophosphorus pesticides (OPPs) and organophosphate esters (OPEs) are organophosphorus compounds created as substitutes for persistent environmental pollutants, namely organochlorines pesticides and brominated flame retardants, respectively. However, there is evidence that organophosphorus compounds are also widespread across the environment and have adverse effects on biota. In humans, OPPs and OPEs were reported to be carcinogenic, neurotoxic, hepatotoxic, nephrotoxic, amongst others. As lipophilic compounds, these accumulate in fat tissues as adipose tissue. Yet biomonitoring studies and analytical methodologies to assess these compounds in the human body are scarce, particularly in adipose tissue. In this study, the presence of six OPPs and seven OPEs was determined in samples of subcutaneous adipose tissue (scAT) and visceral adipose tissue (vAT) from 188 adult obese women. OPPs and OPEs were quantified by gas chromatography (GC) flame photometric detection and confirmed in GC tandem mass spectrometry. The detection frequencies ranged between 0.5-1.6% and 48-53%, respectively for OPPs and OPEs. Organophosphorus pollutants were present in both adipose tissues and median concentrations were 0.008 ± 0.020 µg/g scAT and 0.009 ± 0.020 µg/g vAT. A total of 32 Spearman's correlations were found between organophosphorus pollutants concentrations in adipose tissue and several biochemical parameters (18 positive and 14 negative). Our results show that anthropometric and hormonal parameters, cholesterol, glycaemia, macrominerals, urea and sedimentation velocity might be influenced by the presence of these compounds. The presence of organophosphorus pollutants in the environmental and their possible effect on female metabolic processes is concerning. Particularly because presently OPEs usage is not controlled or limited by any regulation. More studies are needed to fully understand these pollutants behaviour and hazard effects on human health, biota, and the environment so control regulations can be drawn to prevent and lessen their effects.


Subject(s)
Environmental Pollutants , Flame Retardants , Pesticides , Adult , Humans , Female , Organophosphorus Compounds/analysis , Environmental Pollutants/analysis , Pesticides/analysis , Organophosphates , Obesity , Adipose Tissue/chemistry , Flame Retardants/analysis , Environmental Monitoring , Esters
5.
Article in English | MEDLINE | ID: mdl-37494765

ABSTRACT

Fatty acids (FA) are biomarkers of metabolic dysfunction. Adipose tissue is the largest reservoir of FA and acts differently in obese individuals. Menopause by itself significantly alters metabolism, lipid metabolism dysregulation, and adipose tissue distribution. How adipose tissue FA alters an obese individual's metabolism depending on a female's menopausal status is yet poorly understood. Hence, the subcutaneous (scAT) and visceral adipose tissue (vAT) FA profile for 173 obese premenopausal and postmenopausal women was measured and associated with biochemical parameters. scAT and vAT FA profiles were distinct by themselves and in menopause. In total 816 associations were found with biochemical parameters, where only 58 were independent of the menopausal status. The associations found to emphasize the importance of assessing the adipose tissue FA profile and how their behavior changes with menopause. The FA are crucial in metabolic processes and can be helpful biomarkers in the prevention/treatment and follow-up of female obesity.


Subject(s)
Adipose Tissue , Fatty Acids , Female , Humans , Fatty Acids/metabolism , Adipose Tissue/metabolism , Obesity/metabolism , Menopause , Aging , Biomarkers/metabolism
6.
Sci Total Environ ; 894: 165015, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37343847

ABSTRACT

Obesity is a worldwide multifactorial disease linked to persistent pollutants exposure amongst other factors. Humans are daily exposed to an assort of pollutants, such as polychlorinated biphenyls, brominated flame retardants and synthetic musks. These, also known as endocrine disruptors, were all found in human adipose tissue, the preferable matrix for the assessment of long-time accumulation. There are several accounts of hazardous effects of polychlorinated biphenyls and brominated flame retardants on the human organism, whereas for synthetic musks little is still known. Hence, in this study, the levels of polychlorinated biphenyls, brominated flame retardants, and synthetic musks were measured in samples of adipose tissue from 188 Obese Portuguese Women (subcutaneous or scAT and visceral or vAT). After which, associations between pollutants levels and several biochemical parameters from assorted of metabolic processes were studied. Brominated flame retardants were not found in any sample analysed, synthetic musks were found in all the samples analysed (100 % detection frequency) with median levels of 0.4 ± 0.6 µg/g in scAT and 0.4 ± 0.7 µg/g in vAT and polychlorinated biphenyls were found in the majority of samples (<90 % detection frequency) with median levels of 0.1 ± 0.3 µg/g in both tissues. Median concentrations of synthetic musks and polychlorinated biphenyls were similar between scAT and vAT. In total 315 associations were achieved with pollutants levels in adipose tissue, including 273 Spearman's correlations (146 negative and 127 positive). Additionally, 3 multiple linear regressions were achieved. Synthetic musks behave differently than polychlorinated biphenyls and other well-known persistent pollutants in the human body. Synthetic musks behaviour is yet poorly known and their high levels and detection frequencies enforces the need for more studies about their impact on human health. Understanding how these chemicals alter the metabolism is crucial knowledge and hopefully will contribute to improving the treatment and follow-up of obesity in the female population.


Subject(s)
Environmental Pollutants , Flame Retardants , Polychlorinated Biphenyls , Humans , Female , Polychlorinated Biphenyls/analysis , Flame Retardants/analysis , Portugal , Environmental Pollutants/analysis , Adipose Tissue/chemistry , Obesity
7.
Anal Methods ; 15(13): 1722-1733, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36938680

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are environmentally persistent organic pollutants formed during incomplete combustion and pyrolysis processes. Humans are continuously exposed to PAHs which are linked to severe health effects such as diabetes, cancer, infertility, and poor foetal development, amongst others. PAHs are lipophilic compounds prone to accumulating in adipose tissue. Even though adipose tissue is the ideal matrix to assess over time accumulation of lipophilic pollutants, only a few analytical methods have been developed for this matrix. Aiming to reduce the existent gap, a method for the extraction of PAHs from adipose tissue samples using ultrasound-assisted extraction (UAE) was developed. The behaviour of PAHs (retention, adsorption, and volatilization) over several steps of the analytical procedure was studied. Validation tests were performed on the optimized method. PAHs were quantified using a high performance liquid chromatography (HPLC) system equipped with a photodiode array (PDA) and fluorescence (FLD) detector inline. The method achieved a low matrix effect and presents low method detection (MDL) and quantification (MQL) limits, showing suitability for a selective and sensitive determination of PAHs in adipose tissue. The extraction is performed with 0.4 g of adipose tissue and 6 mL of n-hexane and it does not require clean-up afterwards. Additionally, an Eco-Scale score of 74 and an Analytical GREEnness score of 0.66 were obtained. The method achieved is effective, simpler, greener, and easy to perform, being an alternative to conventional extraction methods. Furthermore, this method can be used as a multi-analyte methodology since it has been previously validated by the authors for the analysis of other lipophilic compounds. Naphthalene (Naph), acenaphthene (Ace), fluorene (Flu), phenanthrene (Phe), anthracene (Ant), fluoranthene (Fln), pyrene (Pyr) and benzo[k]fluoranthene (B[k]Ft) were found in all the tested adipose tissue samples.


Subject(s)
Adipose Tissue , Polycyclic Aromatic Hydrocarbons , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Adipose Tissue/chemistry , Green Chemistry Technology
8.
Toxics ; 11(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36851000

ABSTRACT

The aims of this study were to characterize the exposure of pregnant women living in Portugal to 3-phenoxybenzoic acid (3-PBA) and to evaluate the association of this exposure with maternal outcomes and newborn anthropometric measures. We also aimed to compare exposure in summer with exposure in winter. Pregnant women attending ultrasound scans from April 2018 to April 2019 at a central hospital in Porto, Portugal, were invited to participate. Inclusion criteria were: gestational week between 10 and 13, confirmed fetal vitality, and a signature of informed consent. 3-PBA was measured in spot urine samples by gas chromatography with mass spectrometry (GC-MS). The median 3-PBA concentration was 0.263 (0.167; 0.458) µg/g creatinine (n = 145). 3-PBA excretion was negatively associated with maternal pre-pregnancy body mass index (BMI) (p = 0.049), and it was higher during the summer when compared to winter (p < 0.001). The frequency of fish or yogurt consumption was associated positively with 3-PBA excretion, particularly during the winter (p = 0.002 and p = 0.015, respectively), when environmental exposure is low. Moreover, 3-PBA was associated with levothyroxine use (p = 0.01), a proxy for hypothyroidism, which could be due to a putative 3-PBA-thyroid hormone antagonistic effect. 3-PBA levels were not associated with the anthropometric measures of the newborn. In conclusion, pregnant women living in Portugal are exposed to 3-PBA, particularly during summer, and this exposure may be associated with maternal clinical features.

9.
Am J Physiol Endocrinol Metab ; 324(2): E115-E119, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36351292

ABSTRACT

Adipose tissue dysfunction is a key mechanism that leads to adiposity-based chronic disease. This study aimed to investigate the reliability of the adiponectin/leptin ratio (AdipoQ/Lep) as an adipose tissue and metabolic function biomarker in adults with obesity, without diabetes. Data were collected from a clinical trial conducted in 28 adults with obesity (mean body mass index: 35.4 ± 3.7 kg/m2) (NCT02169778). With the use of a forward stepwise multiple linear regression model to explore the relationship between AdipoQ/Lep and Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), it was observed that 48.6% of HOMA-IR variance was explained by triacylglycerols, AdipoQ/Lep, and waist-to-hip ratio (P < 0.001), AdipoQ/Lep being the strongest independent predictor (Beta = -0.449, P < 0.001). A lower AdipoQ/Lep was correlated with higher body mass index (Rs = -0.490, P < 0.001), body fat mass (Rs = -0.486, P < 0.001), waist-to-height ratio (Rs = -0.290, P = 0.037), and plasma resistin (Rs = -0.365, P = 0.009). These data highlight the central role of adipocyte dysfunction in the pathogenesis of insulin resistance and emphasize that AdipoQ/Lep may be a promising early marker of insulin resistance development in adults with obesity.NEW & NOTEWORTHY Adiponectin/leptin ratio, triacylglycerols, and waist-to-hip ratio explained almost half of HOMA-IR variance in the context of obesity. This study provides evidence to support adipose tissue dysfunction as a central feature of the pathophysiology of obesity and insulin resistance. Early identification of individuals at higher risk of developing metabolic complications through adipose tissue dysfunction assessment and the staging of obesity and its transient phenotypes can contribute to improve therapeutic decision-making.


Subject(s)
Insulin Resistance , Leptin , Humans , Leptin/metabolism , Adiponectin/metabolism , Insulin Resistance/physiology , Reproducibility of Results , Obesity/metabolism , Body Mass Index , Triglycerides
10.
Nutrients ; 14(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36364754

ABSTRACT

The goal of this work was to examine whether elevated iodine intake was associated with adverse effects on IQ among school-age children in Portugal. In a representative sample of children from the north of the country, IQ percentiles by age (assessed with Raven's Colored Progressive Matrices) were dichotomized to <50 ("below-average" IQs) and ≥50. Morning urine iodine concentrations, corrected for creatinine, were dichotomized to <250 µg/g and ≥250 µg/g, according to the European Commission/Scientific Committee on Food's tolerable upper level of daily iodine intake for young children. Data were examined with Chi-square tests, logistic regression, and GLM univariate analysis. The sample (N = 1965) was classified as generally iodine-adequate (median urinary iodine concentration = 129 µg/L; median iodine-to-creatinine ratio = 126 µg/g) according to the WHO's criteria. A greater proportion of children in the ≥250 µg/g group had below-average IQs, compared to children with less than 250 µg/g (p = 0.037), despite a sizable (though non-significant) proportion of children in the less-than-250 µg/g group also presenting below-average IQs, at the bottom of the iodine distribution (<50 µg/g). The proportion of below-average IQs increased with increasingly elevated iodine concentrations (p = 0.047). The association remained significant after the adjustment for confounders, with the elevated iodine group showing increased odds of having below-average IQs when compared with the non-elevated iodine group (OR 1.55; 95% CI 1.11−2.17; p = 0.011). Consistently, the former group presented a lower mean IQ than the latter (p = 0.006). High iodine intake was associated with lower IQs even in a population classified as iodine-adequate. These results bear on child cognition and on initiatives involving iodine supplementation.


Subject(s)
Iodine , Child , Humans , Child, Preschool , Creatinine/urine , Portugal , Iodine/urine , Nutritional Status , Intelligence Tests , Iodides
11.
J Agric Food Chem ; 70(41): 13062-13070, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-35834180

ABSTRACT

Gut microbiota modulation might constitute a mechanism mediating the effects of beer on health. In this randomized, double-blinded, two-arm parallel trial, 22 healthy men were recruited to drink 330 mL of nonalcoholic beer (0.0% v/v) or alcoholic beer (5.2% v/v) daily during a 4-week follow-up period. Blood and faecal samples were collected before and after the intervention period. Gut microbiota was analyzed by 16S rRNA gene sequencing. Drinking nonalcoholic or alcoholic beer daily for 4 weeks did not increase body weight and body fat mass and did not changed significantly serum cardiometabolic biomarkers. Nonalcoholic and alcoholic beer increased gut microbiota diversity which has been associated with positive health outcomes and tended to increase faecal alkaline phosphatase activity, a marker of intestinal barrier function. These results suggest the effects of beer on gut microbiota modulation are independent of alcohol and may be mediated by beer polyphenols.


Subject(s)
Beer , Gastrointestinal Microbiome , Male , Humans , Beer/analysis , RNA, Ribosomal, 16S/genetics , Alkaline Phosphatase , Biomarkers
12.
Toxics ; 10(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35736922

ABSTRACT

In recent decades, citizen awareness of toxic chemicals has been a topic of interest, particularly concerning national and international policy decision makers, expert/scientific platforms, and health protection organizations (WHO, UNEP, CDC, EFSA, IPEN, etc [...].

13.
Clin Nutr ; 41(8): 1660-1666, 2022 08.
Article in English | MEDLINE | ID: mdl-35772219

ABSTRACT

BACKGROUND & AIMS: Although intermittent energy restriction (IER) seems to be as effective as continuous energy restriction (CER) for weight loss, there is still a need to determine the putative effect of this strategy upon the metabolic-inflammatory status. This study aimed to compare the effects of IER versus CER on cardiometabolic and inflammatory markers, over a 12-week period, in adults with obesity. METHODS: Twenty-eight Norwegian adults (20-55 years) with obesity [body mass index: 35.4 (3.7) kg/m2] from a clinical trial (NCT02169778) who completed a 12-weeks diet-induced weight loss as IER (n = 14) or CER (n = 14) were included in this study. Cardiometabolic, adipokines and inflammatory markers were evaluated at baseline and after the intervention. Plasma levels of 13 inflammatory cytokines and chemokines (IL-1ß, IFN-α2, IFN-γ, TNF-α, MCP-1, IL-6, IL-8, IL-10, IL-12, IL-17A, IL-18, IL-23, and IL-33) and 4 adipokines (adiponectin, adipsin, leptin and resistin) were measured through multiplex bead-based flow cytometric immunoassays. RESULTS: Both interventions resulted in comparable reductions in fasting glucose and insulin concentrations, lipid profile biomarkers, and adipokines. There were significant differences in HOMA-IR between interventions, with a more pronounced reduction in the IER group (-3.7 vs -1.6, P = 0.040). Inflammatory cytokines and chemokines decreased significantly in the IER group only. Differences in the relative changes of IL-1ß (-48.5 vs 58.2%, P = 0.011), IFN-γ (-53.2 vs 45.1%, P = 0.023), MCP-1 (-22.0 vs 17.4%, P = 0.023), IL-18 (-40.8 vs 10.1%, P = 0.019), IL-23 (-64.8 vs 44.0%, P = 0.011) and IL-33 (-53.4 vs 35.7%, P = 0.028) were statistically significant between groups, with improvements in the inflammatory profile in the IER group. CONCLUSIONS: Our results suggest that a 12-weeks intermittent energy restriction, in comparison to a continuous energy strategy, could be advantageous to reduce inflammation associated with obesity, and consequently improve insulin resistance, regardless of the amount of weight loss. Registered under ClinicalTrials.gov Identifier no. NCT02169778.


Subject(s)
Cardiovascular Diseases , Interleukin-33 , Adipokines , Adipose Tissue , Adult , Caloric Restriction/methods , Energy Intake , Humans , Inflammation , Interleukin-18 , Interleukin-23 , Obesity/therapy , Weight Loss
14.
J Steroid Biochem Mol Biol ; 219: 106079, 2022 05.
Article in English | MEDLINE | ID: mdl-35143981

ABSTRACT

Brominated flame retardants (BFRs) are persistent environmental pollutants, allowing a constant human exposure which carries several health risks, including the occurrence of breast cancer and vitamin D deficiency. Vitamin D inhibits cell growth and is negatively associated with breast cancer risk. The effect of BFRs in breast cancer and vitamin D pathway is still poorly understood. MCF-7 cells were treated with hexabromocyclododecane (HBCD), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB), hexabromobenzene (HBB) and pentabromotoluene (PBT) using short and long-term exposure protocols. Viability, proliferation, migration, cell cycle and gene expression were assessed. Gene expression of hVDBP and hCYP2R1 was also evaluated in hepatocytes. Long-term exposure of MCF-7 cells to HBB increased cell proliferation and migration, consequently increasing MMP-9 expression. The vitamin D pathway was also altered by BFRs: cells appeared less prepared to activate and transport vitamin D and the signaling, action and inactivation mechanisms were diminished in the presence of BFRs. Untreated MCF-7 cells showed cell cycle arrest in phase G0/G1 in the presence of activated vitamin D. However, when MCF-7 cells were exposed to BFRs, cell cycle was arrested in phase G2/M, possibly due to DNA damage. Nonetheless, calcitriol seems to be able to mitigate the effect of some BFRs exposure, e.g. PBT.


Subject(s)
Breast Neoplasms , Flame Retardants , Female , Flame Retardants/metabolism , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/metabolism , Humans , MCF-7 Cells , Vitamin D/pharmacology
15.
Environ Pollut ; 294: 118639, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34875267

ABSTRACT

Brominated flame retardants (BFRs) are chemicals employed to lower the flammability of several objects. These endocrine disruptor chemicals are lipophilic and persistent in the environment. Due to these characteristics some have been restricted or banned by the European Union, and replaced by several new chemicals, the novel BFRs (NBFRs). BFRs are widely detected in human samples, such as adipose tissue and some were linked with altered thyroid hormone levels, liver toxicity, diabetes and metabolic syndrome in humans. However, the disturbance in lipid metabolism caused by BFRs with emphases to NBFRs remains poorly understood. In this study, we used a pre-adipocyte (3T3-L1) cell line and a hepatocyte (HepG2) cell line to investigate the possible lipid metabolism disruption caused by four BFRs: hexabromobenzene (HBB), pentabromotoluene (PBT), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB) and hexabromocyclododecane (HBCD). For that purpose, proliferation and Oil Red O assays, as well as, medium fatty acids profile evaluation using Gas chromatography and RNA extraction for quantitative RT-PCR assays were performed. We detected a significant reduction in the proliferation of preadipocytes and an increased lipid accumulation during differentiation caused by HBB. This BFR also lead to a significant increased expression of IL-1ß and decreased expression of PGC-1α and adiponectin. Nevertheless, PBT, TBB and HBCD show to increase lipid accumulation in hepatocytes. PBT also display a significant increase of PPARγ gene expression. Lipid accumulation in the cells can occur by diverse mechanisms depending on the BFR. These results highlight the importance of endocrine disruptor compounds in obesity etiopathogeny.


Subject(s)
Flame Retardants , Hydrocarbons, Brominated , 3T3-L1 Cells , Animals , Flame Retardants/toxicity , Halogenated Diphenyl Ethers/toxicity , Hep G2 Cells , Humans , Hydrocarbons, Brominated/toxicity , Lipid Metabolism , Mice
16.
Front Microbiol ; 12: 705020, 2021.
Article in English | MEDLINE | ID: mdl-34349747

ABSTRACT

The risk factors for coronavirus disease 2019 (COVID-19) severity are still poorly understood. Considering the pivotal role of the gut microbiota on host immune and inflammatory functions, we investigated the association between changes in the gut microbiota composition and the clinical severity of COVID-19. We conducted a multicenter cross-sectional study prospectively enrolling 115 COVID-19 patients categorized according to: (1) the WHO Clinical Progression Scale-mild, 19 (16.5%); moderate, 37 (32.2%); or severe, 59 (51.3%), and (2) the location of recovery from COVID-19-ambulatory, 14 (household isolation, 12.2%); hospitalized in ward, 40 (34.8%); or hospitalized in the intensive care unit, 61 (53.0%). Gut microbiota analysis was performed through 16S rRNA gene sequencing, and the data obtained were further related to the clinical parameters of COVID-19 patients. The risk factors for COVID-19 severity were identified by univariate and multivariable logistic regression models. In comparison to mild COVID-19 patients, the gut microbiota of moderate and severe patients have: (a) lower Firmicutes/Bacteroidetes ratio; (b) higher abundance of Proteobacteria; and (c) lower abundance of beneficial butyrate-producing bacteria such as the genera Roseburia and Lachnospira. Multivariable regression analysis showed that the Shannon diversity index [odds ratio (OR) = 2.85, 95% CI = 1.09-7.41, p = 0.032) and C-reactive protein (OR = 3.45, 95% CI = 1.33-8.91, p = 0.011) are risk factors for severe COVID-19 (a score of 6 or higher in the WHO Clinical Progression Scale). In conclusion, our results demonstrated that hospitalized patients with moderate and severe COVID-19 have microbial signatures of gut dysbiosis; for the first time, the gut microbiota diversity is pointed out as a prognostic biomarker of COVID-19 severity.

17.
Nutrients ; 13(4)2021 Apr 08.
Article in English | MEDLINE | ID: mdl-33917736

ABSTRACT

The Mediterranean diet (MD) has been recommended for type 2 diabetes (T2D) treatment. The impact of diet in shaping the gut microbiota is well known, particularly for MD. However, the link between MD and diabetes outcome improvement is not completely clear. This study aims to evaluate the role of microbiota modulation by a nonpharmacological intervention in patients with T2D. In this 12-week single-arm pilot study, nine participants received individual nutritional counseling sessions promoting MD. Gut microbiota, biochemical parameters, body composition, and blood pressure were assessed at baseline, 4 weeks, and 12 weeks after the intervention. Adherence to MD [assessed by Mediterranean Diet Adherence Screener (MEDAS) score] increased after the intervention. Bacterial richness increased after 4 weeks of intervention and was negatively correlated with fasting glucose levels and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). Prevotella to Bacteroides ratio also increased after 4 weeks. In contrast, glycated haemoglobin (HbA1c) and HOMA-IR were only decreased at the end of study. Alkaline phosphatase activity was assessed in fecal samples and was negatively correlated with HbA1c and positively correlated with bacterial diversity. The results of this study reinforce that MD adherence results in a better glycemic control in subjects with T2D. Changes in gut bacterial richness caused by MD adherence may be relevant in mediating the metabolic impact of this dietary intervention.


Subject(s)
Diabetes Mellitus, Type 2/diet therapy , Diabetes Mellitus, Type 2/metabolism , Diet, Mediterranean , Gastrointestinal Microbiome , Aged , Alkaline Phosphatase/metabolism , Bacteroides/physiology , Biodiversity , Blood Pressure , Body Composition , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Type 2/physiopathology , Feces/microbiology , Feeding Behavior , Female , Food , Glycated Hemoglobin/metabolism , Humans , Male , Middle Aged , Patient Compliance , Pilot Projects , Prevotella/physiology , Surveys and Questionnaires
18.
Br J Nutr ; 126(9): 1331-1339, 2021 11 14.
Article in English | MEDLINE | ID: mdl-33461643

ABSTRACT

Lack of knowledge about iodine has been suggested as a risk factor for iodine deficiency in pregnant women, but no studies have addressed this issue in Portugal. So, the aim of this study was to investigate iodine knowledge among Portuguese pregnant women and its association with iodine status. IoMum, a prospective observational study, included 485 pregnant women recruited at Centro Hospitalar e Universitário de S. João, Porto, between the 10th and 13th gestational weeks. Partial scores for knowledge on iodine importance, on iodine food sources or on iodised salt were obtained through the application of a structured questionnaire. Then, a total iodine knowledge score was calculated and grouped into low, medium and high knowledge categories. Urinary iodine concentration (UIC) was measured in spot urine samples by inductively coupled plasma MS. Of the pregnant women, 54 % correctly recognised iodine as important to neurocognitive development, 32 % were unable to identify any iodine-rich food and 71 % presented lack of knowledge regarding iodised salt. Of the women, 61 % had a medium total score of iodine knowledge. Knowledge on iodine importance during pregnancy was positively associated with iodine supplementation and also with UIC. Nevertheless, median UIC in women who correctly recognised the importance of iodine was below the cut-off for adequacy in pregnancy (150 µg/l). In conclusion, knowledge on iodine importance is positively associated with iodine status. Despite this, recognising iodine importance during pregnancy may not be sufficient to ensure iodine adequacy. Literacy-promoting actions are urgently needed to improve iodine status in pregnancy.


Subject(s)
Health Knowledge, Attitudes, Practice , Iodine , Pregnant Women , Cohort Studies , Cross-Sectional Studies , Female , Humans , Iodine/analysis , Nutritional Status , Portugal , Pregnancy , Sodium Chloride, Dietary
19.
Br J Nutr ; 126(9): 1314-1322, 2021 11 14.
Article in English | MEDLINE | ID: mdl-33441198

ABSTRACT

The role of milk and dairy products in supplying iodine to pregnant women is unknown in Portugal. The aim of this study was to evaluate the association between milk and dairy product consumption and the iodine status of pregnant women in the IoMum cohort of the Oporto region. Pregnant women were recruited between 10 and 13 weeks of gestation, when they provided a spot urine sample and information on lifestyle and intake of iodine-rich foods. Urinary iodine concentration (UIC) was determined by inductively coupled plasma MS. A total of 468 pregnant women (269 iodine supplement users and 199 non-supplement users) were considered eligible for analysis. Milk (but not yogurt or cheese) intake was positively associated with UIC, in the whole population (P = 0·02) and in the non-supplement users (P = 0·002), but not in the supplement users (P = 0·29). In non-supplement users, adjusted multinomial logistic regression analysis showed that milk consumption <3 times/month was associated with a five times increased risk of having UIC < 50 µg/l when compared with milk consumption ≥2 times/d (OR 5·4; 95 % CI 1·55, 18·78; P = 0·008). The highest UIC was observed in supplement users who reported consuming milk once per d (160 µg/l). Milk, but not yogurt or cheese, was positively associated with iodine status of pregnant women. Despite the observed positive association, daily milk consumption may not be sufficient to ensure adequate iodine intake in this population.


Subject(s)
Dairy Products , Iodine , Milk , Animals , Dietary Supplements , Female , Humans , Iodine/analysis , Milk/chemistry , Nutritional Status , Pregnancy , Pregnant Women
20.
J Pharm Biomed Anal ; 191: 113598, 2020 Nov 30.
Article in English | MEDLINE | ID: mdl-32947168

ABSTRACT

Synthetic musks and organophosphorus pesticides represent a potential risk to the human health since exposure can lead to distinct types of carcinogenesis and endocrine disorders. These are lipophilic compounds as such, prone to deposit and persist in fat tissues, mainly in adipose tissue. Very few studies have reported on the occurrence and accumulation profile of these contaminants in human adipose tissue. Analytical methods for the detection and quantification of synthetic musks and organophosphorus pesticides in adipose tissue are lacking. In this study, the efficacy of different extraction with ultrasonic homogenizer and dispersive solid-phase extraction (d-SPE) clean-up methods were evaluated in human adipose tissue. The relative sample clean-up was assessed by measurement of total lipid content. The quantification of four synthetic musks and six organophosphorus pesticides were performed by gas chromatography (GC) mass spectrometry (MS) and flame photometric detection (FPD), respectively. The d-SPE clean-up with 50 mg PSA, 150 mg MgSO4, 100 mg C18EC and 50 mg Z-Sep provided the most effective clean-up, removing the greatest amount of interfering substances including lipids and simultaneously ensuring good chromatographic separation and recoveries. Method detection limits were between 4 to 9 ng/g for synthetic musk and 1 to 7 ng/g for organophosphorus pesticides in adipose tissue. The proposed method was applied to adipose tissue of obese patients and positive samples were confirmed with GC tandem mass spectrometry. Galaxolide was found in all the samples tested with concentrations ranging from 0.08 to 0.5 µg/g of adipose tissue. No other synthetic musk studied was detected. Organophosphorus pesticides were not found in the analysed samples. The developed analytical procedures were successful and can easily be applied to biomonitoring these compounds in human adipose tissue.


Subject(s)
Pesticides , Adipose Tissue , Fatty Acids, Monounsaturated , Gas Chromatography-Mass Spectrometry , Humans , Organophosphorus Compounds , Receptor Protein-Tyrosine Kinases , Receptors, Cholinergic
SELECTION OF CITATIONS
SEARCH DETAIL
...