Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Bio Protoc ; 11(8): e3994, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-34124295

ABSTRACT

Women are born with an abundant but finite pool of ovarian follicles, which naturally and progressively decreased during their reproductive years until menstrual periods stop permanently (menopause). Perimenopause represents the transition from reproductive to non-reproductive life. It is usually characterized by neuroendocrine, metabolic and behavioral changes, which result from a follicular depletion and reduced number of ovarian follicles. During this period, around 45-50 years old, women are more likely to express mood disorders, anxiety, irritability and vasomotor symptoms. The current animal models of reproductive aging do not successfully replicate human perimenopause and the gradual changes that occur in this phase. While the traditional rat model of menopause involves ovariectomy or surgical menopause consisting of the rapid and definitive removal of the ovaries resulting in a complete loss of all ovarian hormones, natural or transitional menopause is achieved by the selective loss of ovarian follicles (perimenopause period). However, the natural aging rodent (around 18-24 months) model fails to reach very low estrogen concentrations and overlaps the processes of somatic and reproductive aging. The chronic exposure of young rodents to 4-vinylcyclohexene diepoxide (VCD) is a well-established experimental model for perimenopause and menopause studies. VCD induces loss of ovarian small follicles (primary and primordial) in mice and rats by accelerating the natural process of atresia (apoptosis). The VCD, ovary-intact or accelerated ovarian failure (AOF) model is the experimental model that most closely matches natural human progression to menopause mimicking both hormonal and behavioral changes typically manifested by women in perimenopause. Graphical abstract: The female reproductive system is regulated by a series of neuroendocrine events controlled by central and peripheral components. (A). The mechanisms involved in this control are extremely complex and have not yet been fully clarified. In female mammals whose ovulation (the most important event in a reproductive cycle) occurs spontaneously, reproductive success is achieved through the precise functional and temporal integration of the hypothalamus-pituitary-ovary (HPO) axis. (B). In women, loss of fertility appears to be primarily associated with exhaustion of ovarian follicles, and this process occurs progressively until complete follicular exhaustion marked by the final menstrual period (FMP). (C). While in female rodents, reproductive aging seems to begin as a neuroendocrine process, in which changes in hypothalamic/pituitary function appear independently of follicular atresia. The traditional rat model of menopause, ovariectomy or surgical menopause consists of the rapid and definitive removal of the ovaries resulting in a complete loss of all ovarian hormones. (D). The chronic exposure (15-30 days) to the chemical compound 4-vinylcyclehexene diepoxide (VCD) in young rodents accelerates gradual failure of ovarian function by progressive depletion of primordial and primary follicles, but retains residual ovarian tissue before brain alterations that occurs in women in perimenopause. Low doses of VCD cause the selective destruction of the small preantral follicles of the ovary without affecting other peripheral tissues.

2.
Hypertens Res ; 44(8): 932-940, 2021 08.
Article in English | MEDLINE | ID: mdl-33707760

ABSTRACT

Baroreflex activation by electric stimulation of the carotid sinus (CS) effectively lowers blood pressure. However, the degree to which differences between stimulation protocols impinge on cardiovascular outcomes has not been defined. To address this, we examined the effects of short- and long-duration (SD and LD) CS stimulation on hemodynamic and vascular function in spontaneously hypertensive rats (SHRs). We fit animals with miniature electrical stimulators coupled to electrodes positioned around the left CS nerve that delivered intermittent 5/25 s ON/OFF (SD) or 20/20 s ON/OFF (LD) square pulses (1 ms, 3 V, 30 Hz) continuously applied for 48 h in conscious animals. A sham-operated control group was also studied. We measured mean arterial pressure (MAP), systolic blood pressure variability (SBPV), heart rate (HR), and heart rate variability (HRV) for 60 min before stimulation, 24 h into the protocol, and 60 min after stimulation had stopped. SD stimulation reversibly lowered MAP and HR during stimulation. LD stimulation evoked a decrease in MAP that was sustained even after stimulation was stopped. Neither SD nor LD had any effect on SBPV or HRV when recorded after stimulation, indicating no adaptation in autonomic activity. Both the contractile response to phenylephrine and the relaxation response to acetylcholine were increased in mesenteric resistance vessels isolated from LD-stimulated rats only. In conclusion, the ability of baroreflex activation to modulate hemodynamics and induce lasting vascular adaptation is critically dependent on the electrical parameters and duration of CS stimulation.


Subject(s)
Baroreflex , Hypertension , Animals , Blood Pressure , Carotid Sinus , Electric Stimulation , Heart Rate , Hypertension/therapy , Rats , Rats, Inbred SHR
3.
Clin Exp Pharmacol Physiol ; 48(4): 490-497, 2021 04.
Article in English | MEDLINE | ID: mdl-33462863

ABSTRACT

Hypertension is a multifaceted condition influenced by genetic and environmental factors and estimated to cause 9.4 million deaths globally every year. Recently, there has been growing interest in understanding the gut microbe-host interaction in the maintenance of health or disease states, but relatively few studies have shown an association between the gut microbiome and specific types of hypertension. The deoxycorticosterone acetate (DOCA)-salt model of hypertension in rats is known to have a neurogenic component linked to increased sympathetic nervous system activity. As such, our lab has recently shown the hypertensive response in DOCA treated rats requires an intact organum vasculosum of the lamina terminalis (OVLT), a central hypothalamic circumventricular organ. Currently, we hypothesize the OVLT mediates changes in the gut microbiome associated with concomitant hypertension. Herein, we report that the hypertensive effects of DOCA-salt treatment were significantly attenuated throughout the 24-hour day/night cycle in OLVT lesioned rats on days 1, 3, and 9-21 of DOCA treatment compared with sham rats. Increased blood pressure (BP) in DOCA-salt treated rats was accompanied by specific changes in regional gut microbial populations yet was mitigated and offset by lesion of the OVLT. Furthermore, bacterial populations in OVLT-lesioned rats with attenuated hypertension more closely resembled those in normal control rats. We conclude that DOCA-salt hypertension is associated with specific microbiome changes in the gut, and the attenuated hypertensive effects of DOCA-salt in OVLT-lesioned rats is mediated in part through counteracting changes in these bacterial populations.


Subject(s)
Desoxycorticosterone Acetate , Organum Vasculosum , Animals , Blood Pressure , Gastrointestinal Microbiome , Hypertension , Rats
4.
Bio Protoc ; 10(15): e3708, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-33659372

ABSTRACT

According to the World Health Organization (WHO), nearly 1.13 billion people worldwide have hypertension, a major factor responsible for premature death globally. The inherent multifactorial nature of hypertension makes its study difficult since the chronic rise in blood pressure depends on the intricate connection between dietary, genetic and environmental factors. Therefore, the pathophysi-ology of hypertension is not completely understood. For these reasons, there is an ongoing search for animal models that better mimic changes resulting from this disease. Because of its complexity, the use of animal models aimed at elucidating the pathogenesis of hypertension and to evaluate new therapeutic possibilities is an important tool for understanding this disease since it enables consistent experimental strategies that are impractical in humans. Over time, many animal models have been developed for the study of chronic increases in blood pressure ranging from genetic models that include the spontaneously hypertensive rat (SHR) and genetic manipulations, such as the TGR (mRen2) rat, as well as neurogenic or endocrine models. One of the most commonly used hypertensive rat models today is that of hypertension induced by treatment with deoxycorticosterone acetate associated with high sodium intake, i.e., the DOCA-salt model. This model is known to have a neurogenic component linked to increased sympathetic nervous system activity, and as such the DOCA-salt model promotes cross-talk between endocrine and neural components that lead to increased blood pressure, and may impact the functioning of other organs.

5.
eNeuro ; 5(1)2018.
Article in English | MEDLINE | ID: mdl-29362726

ABSTRACT

Chronic exposure to 4-vinylcycloxene diepoxide (VCD) in rodents accelerates the natural process of ovarian follicular atresia modelling perimenopause in women. We investigated why estrogen therapy is beneficial for symptomatic women despite normal or high estrogen levels during perimenopause. Female rats (28 d) were injected daily with VCD or oil for 15 d; 55-65 d after the first injection, pellets of 17ß-estradiol or oil were inserted subcutaneously. Around 20 d after, the rats were euthanized (control rats on diestrus and estradiol-treated 21 d after pellets implants). Blood was collected for hormone measurement, the brains were removed and dorsal raphe nucleus (DRN), hippocampus (HPC), and amygdala (AMY) punched out for serotonin (5-HT), estrogen receptor ß (ERß), and progesterone receptor (PR) mRNA level measurements. Another set of rats was perfused for tryptophan hydroxylase (TPH) immunohistochemistry in the DRN. Periestropausal rats exhibited estradiol levels similar to controls and a lower progesterone level, which was restored by estradiol. The DRN of periestropausal rats exhibited lower expression of PR and ERß mRNA and a lower number of TPH cells. Estradiol restored the ERß mRNA levels and number of serotonergic cells in the DRN caudal subregion. The 5-HT levels were lower in the AMY and HPC in peristropausal rats, and estradiol treatment increased the 5-HT levels in the HPC and also increased ERß expression in this area. In conclusion, estradiol may improve perimenopause symptoms by increasing progesterone and boosting serotonin pathway from the caudal DRN to the dorsal HPC potentially through an increment in ERß expression in the DRN.


Subject(s)
Brain/drug effects , Estradiol/pharmacology , Estrogens/pharmacology , Hormone Replacement Therapy , Perimenopause/drug effects , Serotonin/metabolism , Animals , Brain/cytology , Brain/metabolism , Cyclohexenes , Estradiol/metabolism , Estrogen Receptor beta/metabolism , Estrogens/metabolism , Female , Models, Animal , Perimenopause/metabolism , RNA, Messenger/metabolism , Rats, Wistar , Receptors, Progesterone/metabolism , Tryptophan Hydroxylase/metabolism , Vinyl Compounds
SELECTION OF CITATIONS
SEARCH DETAIL