Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 16843, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31727973

ABSTRACT

CASK-interactive proteins, Caskin1 and Caskin2, are multidomain neuronal scaffold proteins. Recent data from Caskin1 knockout animals indicated only a mild role of Caskin1 in anxiety and pain perception. In this work, we show that deletion of both Caskins leads to severe deficits in novelty recognition and spatial memory. Ultrastructural analyses revealed a reduction in synaptic profiles and dendritic spine areas of CA1 hippocampal pyramidal neurons of double knockout mice. Loss of Caskin proteins impaired LTP induction in hippocampal slices, while miniature EPSCs in dissociated hippocampal cultures appeared to be unaffected. In cultured Caskin knockout hippocampal neurons, overexpressed Caskin1 was enriched in dendritic spine heads and increased the amount of mushroom-shaped dendritic spines. Chemically induced LTP (cLTP) mediated enlargement of spine heads was augmented in the knockout mice and was not influenced by Caskin1. Immunocytochemistry and immunoprecipitation confirmed that Shank2, a master scaffold of the postsynaptic density, and Caskin1 co-localized within the same complex. Phosphorylation of AMPA receptors was specifically altered by Caskin deficiency and was not elevated by cLTP treatment further. Taken together, our results prove a previously unnoticed postsynaptic role of Caskin scaffold proteins and indicate that Caskins influence learning abilities via regulating spine morphology and AMPA receptor localisation.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Hippocampus/pathology , Nerve Tissue Proteins/genetics , Spatial Learning/physiology , Spatial Memory/physiology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cells, Cultured , Dendritic Spines/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Mice , Mice, Knockout , Nerve Tissue Proteins/metabolism , Primary Cell Culture , Receptors, AMPA/metabolism
2.
Cell Commun Signal ; 13: 33, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26183326

ABSTRACT

BACKGROUND: Cells deploy quality control mechanisms to remove damaged or misfolded proteins. Recently, we have reported that a mutation (R43W) in the Frank-ter Haar syndrome protein Tks4 resulted in aberrant intracellular localization. RESULTS: Here we demonstrate that the accumulation of Tks4(R43W) depends on the intact microtubule network. Detergent-insoluble Tks4 mutant colocalizes with the centrosome and its aggregate is encaged by the intermediate filament protein vimentin. Both the microtubule inhibitor nocodazole and the histone deacetylase inhibitor Trichostatin A inhibit markedly the aggresome formation in cells expressing Tks4(R43W). Finally, pretreatment of cells with the proteasome inhibitor MG132 markedly increases the level of aggresomes formed by Tks4(R43W). Furthermore, two additional mutant Tks4 proteins (Tks4(1-48) or Tks4(1-341)) have been investigated. Whereas the shorter Tks4 mutant, Tks4(1-48), shows no expression at all, the longer Tks4 truncation mutant accumulates in the nuclei of the cells. CONCLUSIONS: Our results suggest that misfolded Frank-ter Haar syndrome protein Tks4(R43W) is transported via the microtubule system to the aggresomes. Lack of expression of Tks4(1-48) or aberrant intracellular expressions of Tks4(R43W) and Tks4(1-341) strongly suggest that these mutations result in dysfunctional proteins which are not capable of operating properly, leading to the development of FTHS.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Craniofacial Abnormalities/genetics , Heart Defects, Congenital/genetics , Microtubules/pathology , Osteochondrodysplasias/congenital , Point Mutation , Protein Aggregation, Pathological/genetics , Adaptor Proteins, Signal Transducing/analysis , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Animals , COS Cells , Chlorocebus aethiops , Craniofacial Abnormalities/metabolism , Craniofacial Abnormalities/pathology , Developmental Disabilities/genetics , Developmental Disabilities/metabolism , Developmental Disabilities/pathology , Heart Defects, Congenital/metabolism , Heart Defects, Congenital/pathology , Humans , Microtubules/genetics , Microtubules/metabolism , Osteochondrodysplasias/genetics , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Protein Folding , Protein Structure, Tertiary , Protein Transport
3.
J Mol Signal ; 8: 8, 2013.
Article in English | MEDLINE | ID: mdl-23924390

ABSTRACT

BACKGROUND: Tks5/FISH is a scaffold protein comprising of five SH3 domains and one PX domain. Tks5 is a substrate of the tyrosine kinase Src and is required for the organization of podosomes/invadopodia implicated in invasion of tumor cells. Recent data have suggested that a close homologue of Tks5, Tks4, is implicated in the EGF signaling. RESULTS: Here, we report that Tks5 is a component of the EGF signaling pathway. In EGF-treated cells, Tks5 is tyrosine phosphorylated within minutes and the level of phosphorylation is sustained for at least 2 hours. Using specific kinase inhibitors, we demonstrate that tyrosine phosphorylation of Tks5 is catalyzed by Src tyrosine kinase. We show that treatment of cells with EGF results in plasma membrane translocation of Tks5. In addition, treatment of cells with LY294002, an inhibitor of PI 3-kinase, or mutation of the PX domain reduces tyrosine phosphorylation and membrane translocation of Tks5. CONCLUSIONS: Our results identify Tks5 as a novel component of the EGF signaling pathway.

4.
Cell Commun Signal ; 10(1): 36, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23181695

ABSTRACT

BACKGROUND: Scaffold proteins have an important role in the regulation of signal propagation. These proteins do not possess any enzymatic activity but can contribute to the formation of multiprotein complexes. Although scaffold proteins are present in all cell types, the nervous system contains them in the largest amount. Caskin proteins are typically present in neuronal cells, particularly, in the synapses. However, the signaling mechanisms by which Caskin proteins are regulated are largely unknown. RESULTS: Here we demonstrate that EphB1 receptor tyrosine kinase can recruit Caskin1 through the adaptor protein Nck. Upon activation of the receptor kinase, the SH2 domain of Nck binds to one of its tyrosine residues, while Nck SH3 domains interact with the proline-rich domain of Caskin1. Complex formation of the receptor, adaptor and scaffold proteins results in the tyrosine phosphorylation of Caskin1 on its SH3 domain. The phosphorylation sites were identified by mass-spectrometry as tyrosines 296 and 336. To reveal the structural consequence of this phosphorylation, CD spectroscopy was performed. This measurement suggests that upon tyrosine phosphorylation the structure of the Caskin1 SH3 domain changes significantly. CONCLUSION: Taken together, we propose that the scaffold protein Caskin1 can form a complex with the EphB1 tyrosine kinase via the Nck protein as a linker. Complex formation results in tyrosine phosphorylation of the Caskin1 SH3 domain. Although we were not able to identify any physiological partner of the SH3 domain so far, we could demonstrate that phosphorylation on conserved tyrosine residues results in marked changes in the structure of the SH3 domain.

SELECTION OF CITATIONS
SEARCH DETAIL
...