Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 381(6654): 216-221, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37440632

ABSTRACT

The domestication of forest trees for a more sustainable fiber bioeconomy has long been hindered by the complexity and plasticity of lignin, a biopolymer in wood that is recalcitrant to chemical and enzymatic degradation. Here, we show that multiplex CRISPR editing enables precise woody feedstock design for combinatorial improvement of lignin composition and wood properties. By assessing every possible combination of 69,123 multigenic editing strategies for 21 lignin biosynthesis genes, we deduced seven different genome editing strategies targeting the concurrent alteration of up to six genes and produced 174 edited poplar variants. CRISPR editing increased the wood carbohydrate-to-lignin ratio up to 228% that of wild type, leading to more-efficient fiber pulping. The edited wood alleviates a major fiber-production bottleneck regardless of changes in tree growth rate and could bring unprecedented operational efficiencies, bioeconomic opportunities, and environmental benefits.


Subject(s)
Gene Editing , Lignin , Populus , Wood , Carbohydrates/analysis , Lignin/genetics , Wood/genetics , CRISPR-Cas Systems , Populus/genetics , Paper , Sustainable Growth
2.
Tree Physiol ; 40(1): 73-89, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31211386

ABSTRACT

Cellulose synthase A genes (CesAs) are responsible for cellulose biosynthesis in plant cell walls. In this study, functions of secondary wall cellulose synthases PtrCesA4, PtrCesA7-A/B and PtrCesA8-A/B were characterized during wood formation in Populus trichocarpa (Torr. & Gray). CesA RNAi knockdown transgenic plants exhibited stunted growth, narrow leaves, early necrosis, reduced stature, collapsed vessels, thinner fiber cell walls and extended fiber lumen diameters. In the RNAi knockdown transgenics, stems exhibited reduced mechanical strength, with reduced modulus of rupture (MOR) and modulus of elasticity (MOE). The reduced mechanical strength may be due to thinner fiber cell walls. Vessels in the xylem of the transgenics were collapsed, indicating that water transport in xylem may be affected and thus causing early necrosis in leaves. A dramatic decrease in cellulose content was observed in the RNAi knockdown transgenics. Compared with wildtype, the cellulose content was significantly decreased in the PtrCesA4, PtrCesA7 and PtrCesA8 RNAi knockdown transgenics. As a result, lignin and xylem contents were proportionally increased. The wood composition changes were confirmed by solid-state NMR, two-dimensional solution-state NMR and sum-frequency-generation vibration (SFG) analyses. Both solid-state nuclear magnetic resonance (NMR) and SFG analyses demonstrated that knockdown of PtrCesAs did not affect cellulose crystallinity index. Our results provided the evidence for the involvement of PtrCesA4, PtrCesA7-A/B and PtrCesA8-A/B in secondary cell wall formation in wood and demonstrated the pleiotropic effects of their perturbations on wood formation.


Subject(s)
Populus/genetics , Cell Wall , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Wood , Xylem/genetics
3.
Nat Commun ; 10(1): 3548, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31391460

ABSTRACT

Microbial fermentation of lignocellulosic biomass to produce industrial chemicals is exacerbated by the recalcitrant network of lignin, cellulose and hemicelluloses comprising the plant secondary cell wall. In this study, we show that transgenic poplar (Populus trichocarpa) lines can be solubilized without any pretreatment by the extreme thermophile Caldicellulosiruptor bescii that has been metabolically engineered to shift its fermentation products away from inhibitory organic acids to ethanol. Carbohydrate solubilization and conversion of unpretreated milled biomass is nearly 90% for two transgenic lines, compared to only 25% for wild-type poplar. Unexpectedly, unpretreated intact poplar stems achieved nearly 70% of the fermentation production observed with milled poplar as the substrate. The nearly quantitative microbial conversion of the carbohydrate content of unpretreated transgenic lignocellulosic biomass bodes well for full utilization of renewable biomass feedstocks.


Subject(s)
Clostridiales/metabolism , Fermentation , Industrial Microbiology , Metabolic Engineering , Populus/metabolism , Biomass , Cellulose/metabolism , Clostridiales/genetics , Ethanol/metabolism , Lignin/metabolism , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Polysaccharides/metabolism , Populus/chemistry , Populus/genetics
4.
Nat Commun ; 9(1): 1579, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29679008

ABSTRACT

A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how changing expression of pathway gene or gene combination affects protein abundance, metabolic-flux, metabolite concentrations, and 25 wood traits, including lignin, tree-growth, density, strength, and saccharification. The analysis then predicts improvements in any of these 25 traits individually or in combinations, through engineering expression of specific monolignol genes. The analysis may lead to greater understanding of other pathways for improved growth and adaptation.


Subject(s)
Lignin/biosynthesis , Lignin/genetics , Populus/genetics , Wood/chemistry , Wood/physiology , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Populus/metabolism , Transcriptome/genetics , Trees/genetics , Trees/metabolism , Xylem/metabolism
5.
Proc Natl Acad Sci U S A ; 110(26): 10848-53, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23754401

ABSTRACT

Laccases, as early as 1959, were proposed to catalyze the oxidative polymerization of monolignols. Genetic evidence in support of this hypothesis has been elusive due to functional redundancy of laccase genes. An Arabidopsis double mutant demonstrated the involvement of laccases in lignin biosynthesis. We previously identified a subset of laccase genes to be targets of a microRNA (miRNA) ptr-miR397a in Populus trichocarpa. To elucidate the roles of ptr-miR397a and its targets, we characterized the laccase gene family and identified 49 laccase gene models, of which 29 were predicted to be targets of ptr-miR397a. We overexpressed Ptr-MIR397a in transgenic P. trichocarpa. In each of all nine transgenic lines tested, 17 PtrLACs were down-regulated as analyzed by RNA-seq. Transgenic lines with severe reduction in the expression of these laccase genes resulted in an ∼40% decrease in the total laccase activity. Overexpression of Ptr-MIR397a in these transgenic lines also reduced lignin content, whereas levels of all monolignol biosynthetic gene transcripts remained unchanged. A hierarchical genetic regulatory network (GRN) built by a bottom-up graphic Gaussian model algorithm provides additional support for a role of ptr-miR397a as a negative regulator of laccases for lignin biosynthesis. Full transcriptome-based differential gene expression in the overexpressed transgenics and protein domain analyses implicate previously unidentified transcription factors and their targets in an extended hierarchical GRN including ptr-miR397a and laccases that coregulate lignin biosynthesis in wood formation. Ptr-miR397a, laccases, and other regulatory components of this network may provide additional strategies for genetic manipulation of lignin content.


Subject(s)
Down-Regulation/genetics , Laccase/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Populus/enzymology , Populus/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Base Sequence , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Gene Regulatory Networks , Genes, Plant , Laccase/antagonists & inhibitors , Lignin/antagonists & inhibitors , Lignin/chemistry , Lignin/metabolism , Phylogeny , Plant Proteins/genetics
6.
New Phytol ; 199(2): 452-463, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23560452

ABSTRACT

Hemlock woolly adelgid (HWA) is an exotic insect pest causing severe decimation of native hemlock trees. Extensive research has been conducted on the ecological impacts of HWA, but the exact physiological mechanisms that cause mortality are not known. Water relations, anatomy and gas exchange measurements were assessed on healthy and infested eastern (Tsuga canadensis) and Carolina (Tsuga caroliniana) hemlock trees. These data were then used in a mechanistic model to test whether the physiological responses to HWA infestation were sufficiently significant to induce changes in whole-plant water use and carbon uptake. The results indicated coordinated responses of functional traits governing water relations in infested relative to healthy trees. In response to HWA, leaf water potential, carbon isotope ratios, plant hydraulic properties and stomatal conductance were affected, inducing a reduction in tree water use by > 40% and gross primary productivity by 25%. Anatomical changes also appeared, including the activation of traumatic cells. HWA infestation had a direct effect on plant water relations. Despite some leaf compensatory mechanisms, such as an increase in leaf hydraulic conductance and nitrogen content, tree water use and carbon assimilation were diminished significantly in infested trees, which could contribute to tree mortality.


Subject(s)
Carbon/metabolism , Hemiptera/physiology , Plant Diseases/parasitology , Tsuga/parasitology , Water/metabolism , Animals , Carbon Isotopes , Circadian Rhythm/physiology , Models, Biological , Nitrogen/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Plant Stems/physiology , Plant Stomata/physiology , Seasons , Wood/anatomy & histology , Xylem/anatomy & histology
7.
ACS Macro Lett ; 1(7): 867-870, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-35607134

ABSTRACT

Ultrathin films of aligned cellulose nanocrystals (CNCs) were assembled on mica supports by using electric field-assisted shear. The relationship between polarization gradients and strain mechanics of the obtained films was examined by monitoring their deflection with an atomic force microscope operated in contact mode. The piezoelectric response of the films was ascribed to the collective contribution of the asymmetric crystalline structure of the cellulose crystals. The magnitude of the effective shear piezoelectric constant (d25) of highly ordered CNC films was determined to be 2.1 Å/V, which is comparable to that of a reference film of a piezoelectric metal oxide.

8.
J Colloid Interface Sci ; 363(1): 206-12, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21840015

ABSTRACT

Ultrathin films of cellulose nanocrystals (CNCs) are obtained by using a convective assembly setup coupled with a low-strength external AC electric field. The orientation and degree of alignment of the rod-like nanoparticles are controlled by the applied field strength and frequency used during film formation. Calculated dipole moments and Clausius-Mossotti factors allowed the determination of the critical frequencies, the peak dielectrophoresis as well as the principal orientation of the CNCs in the ultrathin films. As a result of the combination of shear forces and low electric field highly ultrathin films with controlled, unprecedented CNC alignment are achieved.


Subject(s)
Algorithms , Cellulose/chemistry , Electromagnetic Fields , Electrophoresis , Membranes, Artificial , Nanoparticles/chemistry , Particle Size , Surface Properties
9.
Tree Physiol ; 31(2): 226-36, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21450982

ABSTRACT

Members of glycosyltransferase protein families GT8, GT43 and GT47 are implicated in the biosynthesis of xylan in the secondary cell walls of Arabidopsis. The Arabidopsis mutant irx8 has a 60% reduction in xylan. However, over-expression of an ortholog of Arabidopsis IRX8, poplar PoGT8D, in Arabidopsis irx8 mutant could not restore xylan synthesis. The functions of tree GT8D genes remain unclear. We identified two GT8 gene homologs, PtrGT8D1 and PtrGT8D2, in Populus trichocarpa. They are the only two GT8D members and are abundantly and specifically expressed in the differentiating xylem of P. trichocarpa. PtrGT8D1 transcript abundance was >7 times that of PtrGT8D2. To elucidate the genetic function of GT8D in P. trichocarpa, the expression of PtrGT8D1 and PtrGT8D2 was simultaneously knocked down through RNAi. Four transgenic lines had 85-94% reduction in transcripts of PtrGT8D1 and PtrGT8D2, resulting in 29-36% reduction in stem wood xylan content. Xylan reduction had essentially no effect on cellulose quantity but caused an 11-25% increase in lignin. These transgenics exhibit a brittle wood phenotype, accompanied by increased vessel diameter and thinner fiber cell walls in stem xylem. Stem modulus of elasticity and modulus of rupture were reduced by 17-29% and 16-23%, respectively, and were positively correlated with xylan content but negatively correlated with lignin quantity. These results suggest that PtrGT8Ds play key roles in xylan biosynthesis in wood. Xylan may be a more important factor than lignin affecting the stiffness and fracture strength of wood.


Subject(s)
Glycosyltransferases/genetics , Populus/genetics , Xylans/biosynthesis , Arabidopsis/genetics , Arabidopsis/metabolism , Cell Wall/metabolism , Down-Regulation , Elastic Modulus , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Glycosyltransferases/metabolism , Plant Stems/chemistry , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Populus/metabolism , Stress, Mechanical , Transcription Factors , Wood/analysis , Xylans/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...