Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 11(8): 8395-8400, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28753312

ABSTRACT

Ionic liquid gating has a number of advantages over solid-state gating, especially for flexible or transparent devices and for applications requiring high carrier densities. However, the large number of charged ions near the channel inevitably results in Coulomb scattering, which limits the carrier mobility in otherwise clean systems. We develop a model for this Coulomb scattering. We validate our model experimentally using ionic liquid gating of graphene across varying thicknesses of hexagonal boron nitride, demonstrating that disorder in the bulk ionic liquid often dominates the scattering.

2.
Nano Lett ; 17(7): 4390-4399, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28604007

ABSTRACT

Resistance switching in TiO2 and many other transition metal oxide resistive random access memory materials is believed to involve the assembly and breaking of interacting oxygen vacancy filaments via the combined effects of field-driven ion migration and local electronic conduction leading to Joule heating. These complex processes are very difficult to study directly in part because the filaments form between metallic electrode layers that block their observation by most characterization techniques. By replacing the top electrode layer in a metal-insulator-metal memory structure with easily removable liquid electrolytes, either an ionic liquid (IL) with high resistance contact or a conductive aqueous electrolyte, we probe field-driven oxygen vacancy redistribution in TiO2 thin films under conditions that either suppress or promote Joule heating. Oxygen isotope exchange experiments indicate that exchange of oxygen ions between TiO2 and the IL is facile at room temperature. Oxygen loss significantly increases the conductivity of the TiO2 films; however, filament formation is not observed after IL gating alone. Replacing the IL with a more conductive aqueous electrolyte contact and biasing does produce electroformed conductive filaments, consistent with a requirement for Joule heating to enhance the vacancy concentration and mobility at specific locations in the film.

3.
ACS Nano ; 10(4): 4565-9, 2016 04 26.
Article in English | MEDLINE | ID: mdl-26959226

ABSTRACT

One prominent structural feature of ionic liquids near surfaces is formation of alternating layers of anions and cations. However, how this layering responds to an applied potential is poorly understood. We focus on the structure of 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate (BMPY-FAP) near the surface of a strontium titanate (SrTiO3) electric double-layer transistor. Using X-ray reflectivity, we show that at positive bias the individual layers in the ionic liquid double layer thicken and the layering persists further away from the interface. We model the reflectivity using a modified distorted crystal model with alternating cation and anion layers, which allows us to extract the charge density and the potential near the surface. We find that the charge density is strongly oscillatory with and without applied potential and that with an applied gate bias of 4.5 V the first two layers become significantly more cation rich than at zero bias, accumulating about 2.5 × 10(13) cm(-2) excess charge density.

4.
Nat Commun ; 6: 6437, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25762485

ABSTRACT

Electrolyte gating is a powerful technique for accumulating large carrier densities at a surface. Yet this approach suffers from significant sources of disorder: electrochemical reactions can damage or alter the sample, and the ions of the electrolyte and various dissolved contaminants sit Angstroms from the electron system. Accordingly, electrolyte gating is well suited to studies of superconductivity and other phenomena robust to disorder, but of limited use when reactions or disorder must be avoided. Here we demonstrate that these limitations can be overcome by protecting the sample with a chemically inert, atomically smooth sheet of hexagonal boron nitride. We illustrate our technique with electrolyte-gated strontium titanate, whose mobility when protected with boron nitride improves more than 10-fold while achieving carrier densities nearing 10(14) cm(-2). Our technique is portable to other materials, and should enable future studies where high carrier density modulation is required but electrochemical reactions and surface disorder must be minimized.

SELECTION OF CITATIONS
SEARCH DETAIL
...