Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(49): eadh0670, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38055829

ABSTRACT

The origin of Earth's volatile elements is highly debated. Comparing the chalcogen isotope ratios in the bulk silicate Earth (BSE) to those of its possible building blocks, chondritic meteorites, allows constraints on the origin of Earth's volatiles; however, these comparisons are complicated by potential isotopic fractionation during protoplanetary differentiation, which largely remains poorly understood. Using first-principles calculations, we find that core-mantle differentiation does not notably fractionate selenium and tellurium isotopes, while equilibrium evaporation from early planetesimals would enrich selenium and tellurium in heavy isotopes in the BSE. The sulfur, selenium, and tellurium isotopic signatures of the BSE reveal that protoplanetary differentiation plays a key role in establishing most of Earth's volatile elements, and a late veneer does not substantially contribute to the BSE's volatile inventory.

2.
Prog Earth Planet Sci ; 8(1): 61, 2021.
Article in English | MEDLINE | ID: mdl-34790556

ABSTRACT

We report on the mineralogy, petrography, and O and Al-Mg isotopic systematics of secondary mineralization in the metasomatically altered igneous Ca,Al-rich inclusions (CAIs) [compact type A (CTA), B1, B2, forsterite-bearing B (FoB), and C] from the CV3 carbonaceous chondrite Allende. This alteration affected mainly melilite, and to a lesser degree anorthite, and resulted in the formation of a variety of secondary minerals, including adrianite, Al-diopside, andradite, anorthite, calcite, celsian, clintonite, corundum, dmisteinbergite, ferroan olivine, ferroan monticellite, ferroan Al-diopside, forsterite, grossular, heazlewoodite, hedenbergite, hutcheonite, kushiroite, margarite, monticellite, Na-melilite, nepheline, pentlandite, pyrrhotite, sodalite, spinel, tilleyite, wadalite, and wollastonite. The secondary mineral assemblages are mainly defined by chemical compositions of the primary melilite replaced and elements introduced by an aqueous fluid. Gehlenitic melilite (Åk<35) in CTAs and mantles of B1s is mainly replaced by anorthite + grossular; clintonite, corundum, spinel, and Al-diopside are minor. Åkermanitic melilite (Åk35-90) in type B2s, FoBs, and cores of B1s is replaced by the grossular + monticellite + wollastonite, grossular + monticellite, and grossular + Al-diopside assemblages; forsterite, spinel, clintonite, and Na-melilite are minor. In type Cs, lacy melilite (åkermanitic melilite with rounded inclusions of anorthite) is pseudomorphically replaced by the grossular + forsterite + monticellite and grossular + Al-diopside assemblages; Na-melilite is minor. Primary and secondary anorthites in the peripheral portions of CAIs are replaced by nepheline, sodalite, and ferromagnesian olivine. Some CAIs contain voids and cracks filled by andradite, hedenbergite, wollastonite, ±sodalite, ±grossular, ±monticellite, ±tilleyite, and ±calcite. All CAIs studied are surrounded by Wark-Lovering rims, fine-grained matrix-like rims composed of lath-shaped ferroan olivine and abundant nepheline grains, and a layer of salite-hedenbergite pyroxenes + andradite + wollastonite. Grossular associating with monticellite, Al-diopside, and forsterite and replacing åkermanitic melilite (27Al/24Mg ~ 2) has high 27Al/24Mg ratios (30-100) and shows no resolvable excess of radiogenic 26Mg (26Mg*). The 27Al/24Mg ratios (7-10) and 26Mg* (2-3‰) in the nearly monomineralic grossular veins crosscutting gehlenitic melilite are similar to those of the host melilite and plot along a regression line with 26Al/27Al ratio of ~5×10-5. Oxygen isotopic compositions of secondary minerals in the most Type Bs measured in situ with the UH Cameca ims-1280 and matrix-matched standards plot along mass-dependent fractionation line with ∆17O of ~ -3±2‰ with δ18O ranging from ~0 to ~10‰. Primary melilite and anorthite in the host CAIs are similarly 16O-depleted, whereas spinel, forsterite, and most Al,Ti-diopside grains have 16O-rich compositions (∆17O ~ -25±2‰). Secondary grossular and forsterite in type Cs and type B1 CAI TS-34 show a range of ∆17O, from ~ -15 to ~ -1‰; the 16O-enriched compositions of grossular and forsterite plot along the carbonaceous chondrite anhydrous mineral line. The similar ranges of ∆17O and positions on the three-isotope oxygen diagram are observed for primary anorthite; melilite is generally 16O-depleted compared to anorthite (∆17O ~ -5 to -1±2‰); spinel and fassaite are 16O-rich (except very Ti-rich fassaite in TS-34 and CTA CAIs). We conclude that Allende CAIs experienced an open-system in situ metasomatic alteration at relatively high temperatures (200-250 °C) in the presence of CO2- and H2O-bearing fluid with ∆17O of ~ -3±2‰ followed by thermal metamorphism at ~ 500 °C on the CV chondrite parent asteroid. During the alteration, most elements were mobile: Si, Na, Cl, K, Fe, S, and Ni were introduced; Al, Ti, Mg, and Ba were locally mobilized; Ca and some Mg and Al were lost from the host inclusions. The alteration occurred after nearly complete decay of 26Al, >3 Ma after crystallization of CAIs with the canonical (26Al/27Al)0 of (5.25±0.02)×10-5; 26Mg* in grossular was inherited from the primary melilite and provide no chronological significance. Oxygen isotopic heterogeneity of primary minerals in the Allende CAIs at least partly is due to isotopic exchange with an aqueous fluid that largely affected melilite, anorthite, perovskite, Zr- and Sc-rich oxides and silicates, and possibly very Ti-rich fassaite. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40645-021-00437-4.

3.
ACS Earth Space Chem ; 5(10): 2740-2754, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-35005332

ABSTRACT

Recent advances in high-precision potassium (K) isotopic analysis have found considerable isotopic variation in rock samples of the Earth's continental and oceanic crusts; however, it is still uncertain whether there is any resolvable inter-mineral and mineral-melt K isotopic fractionation during igneous and metamorphic processes. Here, we report K isotope compositions of mineral separates from three extremely well preserved igneous rocks (intrusive/extrusive and mafic/intermediate/felsic) in order to investigate possible inter-mineral and mineral-melt K isotopic fractionation at magmatic temperatures. For the first time, we found large inter-mineral fractionation of K isotopes in natural samples (up to 1.072‰), where plagioclase displays a significant enrichment of heavier K isotopes compared to potassium feldspar and biotite in a granite. In addition, we also observed smaller but measurable K isotope fractionation (0.280‰±0.030‰) between ternary feldspar phenocrysts and matrix in a trachyandesite, as well as a comparable isotope fractionation (0.331‰±0.010‰) between plagioclase and the bulk in a gabbroic intrusive rock. We also evaluated such results by comparing the theoretically calculated equilibrium K isotope fractionation factors between relevant igneous minerals in literature and this study. In general, the measured inter-mineral fractionations are consistent with the theoretical calculations (i.e., plagioclase is enriched in heavier isotopes compared to potassium feldspar). Specifically, the measured K isotope fractionation between phenocryst rim and matrix in the trachyandesite agrees well with the calculated equilibrium isotope fractionation. However, the measured K isotope fractionations between phenocryst core and matrix as well as between plagioclase and K-feldspar are significantly larger (by a factor of ~2-3) than the calculated isotope fractionations, which suggest isotopic disequilibrium due to kinetic processes. Using a range of plagioclase-melt isotope fractionation factors inferred from the theoretical calculations in this study, we modeled the K isotopic fractionation during the formation of lunar anorthositic crust, and the result shows a negligible effect on the K isotopic compositions in both lunar crust and mantle. The K isotopic difference between Earth and Moon, therefore, cannot be the result of Lunar Magma Ocean differentiation. Finally, we evaluate the effect of observed inter-mineral fractionations on K-Ar and 40Ar-39Ar dating. This study indicates the variation of 40K/K ratio would contribute a maximum 0.08% error to the K-Ar and 40Ar-39Ar age uncertainties. We propose a refined 40K/total K ratio as 0.00011664±0.00000011 (116.64±0.11ppm) instead of the conventional value, 0.0001167(2) for the present Earth. Because some minerals fractionate K isotopes, ultrahigh precision age dating with the K-Ca-Ar dating systems must measure the K isotope fractionation in the same mineral fractions used for age dating.

4.
Proc Natl Acad Sci U S A ; 116(20): 9723-9728, 2019 May 14.
Article in English | MEDLINE | ID: mdl-31036661

ABSTRACT

The radii and orbital periods of 4,000+ confirmed/candidate exoplanets have been precisely measured by the Kepler mission. The radii show a bimodal distribution, with two peaks corresponding to smaller planets (likely rocky) and larger intermediate-size planets, respectively. While only the masses of the planets orbiting the brightest stars can be determined by ground-based spectroscopic observations, these observations allow calculation of their average densities placing constraints on the bulk compositions and internal structures. However, an important question about the composition of planets ranging from 2 to 4 Earth radii (R⊕) still remains. They may either have a rocky core enveloped in a H2-He gaseous envelope (gas dwarfs) or contain a significant amount of multicomponent, H2O-dominated ices/fluids (water worlds). Planets in the mass range of 10-15 M⊕, if half-ice and half-rock by mass, have radii of 2.5 R⊕, which exactly match the second peak of the exoplanet radius bimodal distribution. Any planet in the 2- to 4-R⊕ range requires a gas envelope of at most a few mass percentage points, regardless of the core composition. To resolve the ambiguity of internal compositions, we use a growth model and conduct Monte Carlo simulations to demonstrate that many intermediate-size planets are "water worlds."

5.
Proc Natl Acad Sci U S A ; 115(29): 7497-7502, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29967181

ABSTRACT

Calcium-aluminum-rich inclusions (CAIs) and amoeboid olivine aggregates (AOAs), a refractory component of chondritic meteorites, formed in a high-temperature region of the protoplanetary disk characterized by approximately solar chemical and oxygen isotopic (Δ17O ∼ -24‰) compositions, most likely near the protosun. Here we describe a 16O-rich (Δ17O ∼ -22 ± 2‰) AOA from the carbonaceous Renazzo-type (CR) chondrite Yamato-793261 containing both (i) an ultrarefractory CAI and (ii) forsterite, low-Ca pyroxene, and silica, indicating formation by gas-solid reactions over a wide temperature range from ∼1,800 to ∼1,150 K. This AOA provides direct evidence for gas-solid condensation of silica in a CAI/AOA-forming region. In a gas of solar composition, the Mg/Si ratio exceeds 1, and, therefore, silica is not predicted to condense under equilibrium conditions, suggesting that the AOA formed in a parcel of gas with fractionated Mg/Si ratio, most likely due to condensation of forsterite grains. Thermodynamic modeling suggests that silica formed by condensation of nebular gas depleted by ∼10× in H and He that cooled at 50 K/hour at total pressure of 10-4 bar. Condensation of silica from a hot, chemically fractionated gas could explain the origin of silica identified from infrared spectroscopy of remote protostellar disks.

6.
Proc Natl Acad Sci U S A ; 110(32): 12917-20, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23878232

ABSTRACT

One explanation of the abrupt cooling episode known as the Younger Dryas (YD) is a cosmic impact or airburst at the YD boundary (YDB) that triggered cooling and resulted in other calamities, including the disappearance of the Clovis culture and the extinction of many large mammal species. We tested the YDB impact hypothesis by analyzing ice samples from the Greenland Ice Sheet Project 2 (GISP2) ice core across the Bølling-Allerød/YD boundary for major and trace elements. We found a large Pt anomaly at the YDB, not accompanied by a prominent Ir anomaly, with the Pt/Ir ratios at the Pt peak exceeding those in known terrestrial and extraterrestrial materials. Whereas the highly fractionated Pt/Ir ratio rules out mantle or chondritic sources of the Pt anomaly, it does not allow positive identification of the source. Circumstantial evidence such as very high, superchondritic Pt/Al ratios associated with the Pt anomaly and its timing, different from other major events recorded on the GISP2 ice core such as well-understood sulfate spikes caused by volcanic activity and the ammonium and nitrate spike due to the biomass destruction, hints for an extraterrestrial source of Pt. Such a source could have been a highly differentiated object like an Ir-poor iron meteorite that is unlikely to result in an airburst or trigger wide wildfires proposed by the YDB impact hypothesis.


Subject(s)
Climate Change , Ice Cover , Ice/analysis , Platinum/analysis , Cold Temperature , Extraterrestrial Environment/chemistry , Geologic Sediments/chemistry , Greenland , Hafnium/analysis , Iridium/analysis , Isotopes/analysis , Lutetium/analysis , Mass Spectrometry/methods , Meteoroids
8.
Naturwissenschaften ; 93(2): 88-91, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16362427

ABSTRACT

Minerals on earth whose crystalline order has been reduced by radioactive decay of contained atoms are termed "metamict." They are rare and few because in most crystalline solids, atoms and vacancies are relatively mobile at terrestrial temperatures, and radiation damage tends to be self-annealing. This is not the case in the extreme cold of deep space. Below roughly 100 K, reduced vacancy mobility allows cosmic ray and solar wind induced lattice defects to endure and accumulate for eons, reaching energy densities of up to MJ kg(-1) in some materials. We examine the possible effects of the release of energy stored in cold deep-space materials when solid-state defects recombine upon warming due to impacts, gravitational infall, or perihelion. Dimensional analysis suggests energetic defect recombination in radiation-damaged "xenomict" solids in comets, and planetesimals may, in some circumstances, raise internal temperatures enough to melt ice and volatilize frozen gases. We speculate that this may account for some cometary outbursts and Deep Impact experiment results. Calorimetric experiments on appropriately irradiated natural and synthetic materials are needed to further quantify these mechanisms.


Subject(s)
Extraterrestrial Environment , Cold Temperature , Cosmic Radiation , Meteoroids , Solar System , Thermodynamics , Wind
9.
Science ; 302(5649): 1388-92, 2003 Nov 21.
Article in English | MEDLINE | ID: mdl-14631038

ABSTRACT

Multiple chondritic meteorite fragments have been found in two sedimentary rock samples from an end-Permian bed at Graphite Peak in Antarctica. The Ni/Fe, Co/Ni, and P/Fe ratios in metal grains; the Fe/Mg and Mn/Fe ratios in olivine and pyroxene; and the chemistry of Fe-, Ni-, P-, and S-bearing oxide in the meteorite fragments are typical of CM-type chondritic meteorites. In one sample, the meteoritic fragments are accompanied by more abundant discrete metal grains, which are also found in an end-Permian bed at Meishan, southern China. We discuss the implications of this finding for a suggested global impact event at the Permian-Triassic boundary.


Subject(s)
Geologic Sediments/chemistry , Meteoroids , Minerals/analysis , Animals , Antarctic Regions , Cobalt/analysis , Iron/analysis , Magnesium/analysis , Magnetics , Manganese/analysis , Metals/analysis , Nickel/analysis , Oxides/analysis , Phosphorus/analysis , Plants , Population Density , Silicates/analysis , Sulfides/analysis , Sulfur/analysis , Time
SELECTION OF CITATIONS
SEARCH DETAIL
...