Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 108(1): 176, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38277014

ABSTRACT

The demand for massive quantities of therapeutic active antimicrobial peptides (AMPs) is high due to their potential as alternatives to antibiotics. However, each antimicrobial peptide has unique properties, necessitating distinct synthesis and purification strategies for their large-scale production. In this study, we bio-synthesized and purified a functional enhanced variant of the AMP epinecidin-1, known as Ac-Var-1 (acid-cleavable variant-1). To generate the active peptide, we cloned the gene for Ac-Var-1 with acid-cleavable site (aspartic acid-proline) into the pET-32a expression vector, purified the fusion protein by His tag enrichment chromatography, and performed acid cleavage to release the active Ac-Var-1 peptide. After acid cleavage, the active Ac-Var-1 was purified and characterized by SDS-PAGE and mass spectrometry. The results from both techniques provided confirmation of the intactness of the purified Ac-Var-1. The Ac-Var-1 inhibited the growth of pathogenic Escherichia coli and Staphylococcus aureus. KEY POINTS : • Epinecidin-1 is a well-known antimicrobial peptide having multipotential bioactivities. • Epinecidin-1 variant is developed via the site-directed mutagenesis method to improve its structural stability and bioactivity. • AC-Var-1 development is an economical and easy method to remove peptide from tag protein.


Subject(s)
Antimicrobial Cationic Peptides , Staphylococcal Infections , Humans , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Electrophoresis, Polyacrylamide Gel , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
2.
Environ Sci Pollut Res Int ; 27(36): 44922-44936, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33006097

ABSTRACT

Biofilm, a consortium of microbial cells, protected by extracellular polymeric matrix, is considered a global challenge due to the inherent antibiotic resistance conferred by its lifestyle. Besides, it poses environmental threats causing huge damage in food industries, fisheries, refineries, water systems, pharmaceutical industries, medical industries, etc. Living in a community of microbial populations is most critical in the clinical field, making it responsible for about 80% of severe and chronic microbial diseases. The necessity to find an alternative approach is the need of the hour to solve these crises. So far, many approaches have been attempted to disrupt the initial stage of biofilm formation, including adherence and maturation. Bacteriocins are a group of antimicrobial peptides, produced by bacteria having the potential to disrupt biofilm either by itself or in combination with other drugs than antibiotic counterparts. A clear understanding on mechanisms of bacterial biofilm formation, progression, and resistance will surely lead to the development of innovative, effective biofilm control strategies in pharmaceutical, health care industries and environmental locales.


Subject(s)
Bacteriocins , Pharmaceutical Preparations , Anti-Bacterial Agents/pharmacology , Biofilms , Peptides
SELECTION OF CITATIONS
SEARCH DETAIL
...