Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(2)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38399277

ABSTRACT

Niosomes are vesicular nanocarriers, biodegradable, relatively non-toxic, stable, and inexpensive, that provide an alternative for lipid-solid carriers (e.g., liposomes). Niosomes may resolve issues related to the instability, fast degradation, bioavailability, and insolubility of different drugs or natural compounds. Niosomes can be very efficient potential systems for the specific delivery of anticancer, antioxidant, anti-inflammatory, antimicrobial, and antibacterial molecules. This review aims to present an overview of their composition, the most common formulation techniques, as well as of recent utilizations as delivery systems in cancer therapy.

2.
Plants (Basel) ; 12(14)2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37514347

ABSTRACT

Recently, increased attention has been paid to natural sources as raw materials for the development of new added-value products. Flavonoids are a large family of polyphenols which include several classes based on their basic structure: flavanones, flavones, isoflavones, flavonols, flavanols, and anthocyanins. They have a multitude of biological properties, such as anti-inflammatory, antioxidant, antiviral, antimicrobial, anticancer, cardioprotective, and neuroprotective effects. Current trends of research and development on flavonoids relate to identification, extraction, isolation, physico-chemical characterization, and their applications to health benefits. This review presents an up-to-date survey of the most recent developments in the natural flavonoid classes, the biological activity of representative flavonoids, current extraction techniques, and perspectives.

3.
Molecules ; 28(3)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36770768

ABSTRACT

Xanthylium derivatives are curcumin analogs showing photochromic properties. Similarly, to anthocyanins, they follow the same multistate network of chemical species that are reversibly interconverted by external stimuli. In the present work, two new asymmetric monocarbonyl analogues of curcumin, 4-(4-hydroxy-3-metoxybenzylidene)-1,2,3,4-tetrahydroxanthylium chloride (compound 3) and 4-(4-hydroxybenzylidene)-6-methoxy-1,2,3,4-tetrahydroxanthylium chloride (compound 4) were synthesized, and their photochromic and biological properties were investigated. The UV-Vis spectroscopy and the direct and reverse pH-jumps studies confirmed the halochromic properties and the existence of different molecular species. A network of chemical reactions of these species was proposed. Furthermore, the antiproliferative properties of both compounds were evaluated using P19 murine embryocarcinoma cells and compared with each other. The results demonstrate that both new xanthylium derivatives modify the progression through the cell cycle of P19 cells, which translates into a significant antiproliferative effect. The effect of the methoxy group position is discussed and several checkpoint proteins are advanced as putative targets.


Subject(s)
Antineoplastic Agents , Curcumin , Animals , Mice , Curcumin/chemistry , Structure-Activity Relationship , Anthocyanins , Chlorides , Antineoplastic Agents/chemistry
4.
Enzyme Microb Technol ; 163: 110168, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36481541

ABSTRACT

Glycerol is an important starting material for the synthesis of many chemical compounds and its selective oxidation represents an efficient way to produce value-added compounds. Glyceric acid, one of these selective oxidation products, is an important intermediate in the food, medicine, cosmetics, and light industries. In this work, four commercially available native laccases were screened for glycerol oxidation using different initiators, and the two most efficient biocatalysts were covalently immobilized on functionalized magnetic and polymethacrylate (Lifetech™) solid supports. Apart from the mostly employed Fe3O4 magnetic particles, in this work Ni-Zn or Ni-Zn-Co spinel ferrite (MFe2O4) microparticles were used. Particularly, the utilization (for the first time for laccase immobilization) of Ni-Zn ferrite support Ni0.7Zn0.3Fe2O4 functionalized with 3-aminopropyl-trimethoxysilane, via crosslinking by glutaraldehyde and reduction with NaBH4 led to excellent biocatalytic efficiency and stability. These results confirm the feasibility of Trametes versicolor laccase for covalent bonding, as presumed by computational modelling. The resulted enzymatic preparations were characterized in detail in terms of stability and reusability, demonstrating enhanced storage, pH and thermal stability compared to the native enzymes. The most active biocatalysts (790.93 [U/g]) were successfully used for glycerol oxidation and the specific conversion in glyceric acid exceeded 50%.


Subject(s)
Laccase , Trametes , Laccase/chemistry , Glycerol , Enzymes, Immobilized/chemistry , Hydrogen-Ion Concentration
5.
Materials (Basel) ; 15(19)2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36234326

ABSTRACT

Six new bio-inspired flavylium salts were synthesized and investigated by a combined computational and experimental study for dye-sensitized solar cell applications. The compounds were characterized by FT-IR, UV-Vis, NMR spectroscopy, and LC-MS spectrometry techniques. The pH-dependent photochromic properties of the flavylium dyes were investigated through a UV-Vis spectroscopy study and revealed that they follow the same network of chemical reactions as anthocyanins upon pH changes. The structural and electronic properties of the dyes were investigated using density functional theory (DFT) and time-dependent density functional theory (TD-DFT). Geometry optimization calculation revealed that all dyes, regardless of the specie, flavylium cations or quinoidal bases, present a planar geometry. The photovoltaic performances of the dyes, in both flavylium and quinoidal base forms, were evaluated by the HOMO and LUMO energies and by calculating the light-harvesting efficiencies, the free energy change of electron injection, and the free energy change regeneration. The MO analysis showed that all dyes can inject electrons into the conduction band of the TiO2 upon excitation and that the redox couple can regenerate the oxidized dyes. The results obtained for the free energy change of electron injection suggest that the quinoidal bases should inject electrons into the semiconductor more efficiently than the flavylium cations. The values for the free energy change regeneration showed that the redox electrolyte can easily regenerate all dyes. Dipole moment analysis was also performed. DSSCs based on the dyes, in both flavylium and quinoidal base forms, were assembled, and their photovoltaic performances were evaluated by measuring the open-circuit voltage, the short circuit current density, the fill factor, and the energy conversion efficiency. Results obtained by both experimental and computational studies showed that the overall performances of the DSSCs with the quinoidal forms were better than those obtained with the flavylium cations dyes.

6.
Foods ; 11(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36010484

ABSTRACT

This study reports the synthesis of a hybrid sol-gel material, based on organically modified silanes (ORMOSILs) with epoxy functional groups, and its application in the stabilization of lipase type B from Candida antarctica (CalB) through sol-gel entrapment. The key immobilization parameters in the sol-gel entrapment of lipase using epoxysilanes were optimized by the design of numerous experiments, demonstrating that glycidoxypropyl-trimethoxysilane can allow the formation of a matrix with excellent properties in view of the biocatalytic esterifications catalyzed by this lipase, at an enzyme loading of 25 g/mol of silane. The characterization of the immobilized biocatalyst and the correlation of its catalytic efficiency with the morphological and physicochemical properties of the sol-gel matrix was accomplished through scanning electron microscopy (SEM), fluorescence microscopy (FM), as well as thermogravimetric and differential thermal analysis (TGA/DTA). The operational and thermal stability of lipase were increased as a result of immobilization, with the entrapped lipase retaining 99% activity after 10 successive reaction cycles in the batch solventless synthesis of n-amyl caproate. A possible correlation of optimal productivity and yield was attempted for this immobilized lipase via the continuous flow synthesis of n-amyl caproate in a solventless system. The robustness and excellent biocatalytic efficiency of the optimized biocatalyst provide a promising solution for the synthesis of food-grade flavor esters, even at larger scales.

7.
Int J Mol Sci ; 23(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897679

ABSTRACT

Anthocyanidins, the aglycons of anthocyanins, are known, beyond their function in plants, also as compounds with a wide range of biological and pharmacological activities, including cytostatic effect against various cancer cells. The nature and position of the substituents in the flavylium cation is essential for such biological properties, as well as the equilibrium between the multistate of the different chemical species that are generated by the flavylium cation, including quinoidal base, hemiketal, and cis- and trans-chalcones. In this work, eight new flavylium derivatives were synthesized, characterized for confirmation of the structure by FT-IR and 2D-NMR, and investigated in vitro as possible cytostatic compounds against HCT116 and HepG2 cancer cells. The most active two compounds were explored for their halochromic properties that can influence the biological activity and subjected to molecular encapsulation in ß-cyclodextrin derivatives in order to increase their solubility in water and bioavailability. The anticancer effect was influenced by the position (6-, 7-, or 8-) of the methoxy group in the ß-ring of the methoxy-4'-hydroxy-3'-methoxyflavylium cation, while the study of the halochromic properties revealed the important role played by the chalcone species of the pH-dependent multistate in both the uncomplexed and inclusion complex forms of these anthocyanidins.


Subject(s)
Chalcone , Cytostatic Agents , Anthocyanins/chemistry , Anthocyanins/pharmacology , Cations , Spectroscopy, Fourier Transform Infrared
8.
Polymers (Basel) ; 13(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073296

ABSTRACT

An industrially manufactured recycled polyol, obtained by acidolysis process, was for the first time proved to be a possible replacement of the reference fossil-based polyol in a low-density formulation suitable for industrial production of flexible polyurethane foams. The influence of increasing recycled polyol amounts on the properties of the polyurethane foam has been studied, also performing foam emission tests to evaluate the environmental impact. Using 10 pbw recycled polyol in the standard formulation, significant differences of the physical properties were not observed, but increase of the recycled polyol amount to 30 pbw led to a dramatic decrease of the foam air flow and a very tight foam. To overcome this drawback, N,N'-bis[3-(dimethylamino)propyl]urea was selected as tertiary amine catalyst, enabling the preservation of foam properties even at high recycled polyol level (30 pbw). Foam emission data demonstrated that this optimized foam formulation also led to an important reduction of volatile organic compounds. The results open the way for further optimization studies in low-density flexible polyurethane foam formulations, to increase the reutilization of the polyurethane waste and reduce the amount of petroleum-based raw materials.

9.
Biomedicines ; 10(1)2021 Dec 26.
Article in English | MEDLINE | ID: mdl-35052723

ABSTRACT

The drug-loaded nanocarriers have overcome various challenges compared with the pure chemotherapeutic drug, such as limited bioavailability, multiple drug resistance, poor patient compliance, and adverse drug reactions, offering advantages such as protection from degradation in the blood stream, better drug solubility, and improved drug stability. One promising group of controlled and targeted drug delivery systems is polymer-based nanoparticles that can sustain the release of the active agent by diffusion and their degradation. Sorafenib is the only drug that can prolong the life of patients suffering from hepatocellular carcinoma. Cisplatin remains one of the most widely used broad-spectrum anticancer drugs for the treatment of a variety of solid tumours. Nanoformulations can exert a synergistic effect by entrapping two drugs with different modes of action, such as sorafenib and cisplatin. In our study, polymeric nanoparticles were prepared with a good production yield by an improved double emulsion solvent evaporation method using the copolymer of 12-hydroxystearic acid with ε-caprolactone (12CL), a biocatalytically synthesised biocompatible and biodegradable carrier, for the co-entrapment of sorafenib and cisplatin in nanotherapeutics. A bovine serum albumin (BSA) model compound was used to increase the cisplatin incorporation; then, it was successfully substituted by a iRGD tumour penetrating peptide that might provide a targeting function of the nanoparticles.

10.
Polymers (Basel) ; 12(7)2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32664336

ABSTRACT

Ester polyurethane (PU) foam waste was reacted at atmospheric pressure in an autoclave and using microwaves with diethylene glycol (DEG) at different PU/DEG ratios in the presence of diethanolamine as a catalyst to find the glycolysis conditions that allow for the improved recovery of the PU foam waste and enable the recycling of the whole glycolysis product in foam formulations suitable for industrial application. The recycled polyol was characterized by dynamic viscosity, hydroxyl number, water content, and density, while thermal stability was assessed using thermogravimetric analysis. In the PU foam formulation, 1% and 5% of the glycolyzed material was reused. The relationship between the reuse level of the recycled polyol and the physical properties of the foam was thoroughly investigated. It was observed that both hardness and air flow decreased with increasing recycled polyol content, particularly for the polyester type foam, while tensile strength and compression strength increased. Depending on the amount of recycled polyol and catalyst used, polyether-based foams could be obtained with a low air permeability, needed in special applications as sealed foams, or with higher air permeability desirable for comfort PU foams. The results open the way for further optimization studies of industrial polyurethane foam formulations using a glycolysis process without any separation stage.

11.
Pharmaceutics ; 12(2)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31972960

ABSTRACT

The aim of this work was to assess the impact of an excipient in a pharmaceutical formulation containing candesartan cilexetil over the decomposition of the active pharmaceutical ingredient and to comparatively investigate the kinetics of degradation during thermolysis in an oxidative atmosphere under controlled thermal stress. To achieve this, the samples were chosen as follows: pure candesartan cilexetil and a commercial tablet of 32 mg strength. As a first investigational tool, Universal attenuated total reflection Fourier transform infrared (UATR-FTIR) spectroscopy was chosen in order to confirm the purity and identity of the samples, as well as to check if any interactions took place in the tablet between candesartan cilexetil and excipients under ambient conditions. Later on, samples were investigated by thermal analysis, and the elucidation of the decomposition mechanism was achieved solely after performing an in-depth kinetic study, namely the use of the modified non-parametric kinetics (NPK) method, since other kinetic methods (American Society for Testing and Materials-ASTM E698, Friedman and Flynn-Wall-Ozawa) led to inadvertencies. The NPK method suggested that candesartan cilexetil and the tablet were degraded by the contribution of two steps, the main being represented by chemical degradation and the secondary being a physical transformation. The excipients chosen in the formulation seemed to have a stabilizing effect on the decomposition of the candesartan cilexetil that was incorporated into the tablet, relative to pure active pharmaceutical ingredient (API), since the apparent activation energy for the decomposition of the tablet was 192.5 kJ/mol, in comparison to 154.5 kJ/mol for the pure API.

12.
Polymers (Basel) ; 11(9)2019 Aug 26.
Article in English | MEDLINE | ID: mdl-31455024

ABSTRACT

Following the latest developments, bio-based polyesters, obtained from renewable raw materials, mainly carbohydrates, can be competitive for the fossil-based equivalents in various industries. In particular, the furan containing monomers are valuable alternatives for the synthesis of various new biomaterials, applicable in food additive, pharmaceutical and medical field. The utilization of lipases as biocatalysts for the synthesis of such polymeric compounds can overcome the disadvantages of high temperatures and metal catalysts, used by the chemical route. In this work, the enzymatic synthesis of new copolymers of ε-caprolactone and 5-hydroxymethyl-2-furancarboxylic acid has been investigated, using commercially available immobilized lipases from Candida antarctica B. The reactions were carried out in solvent-less systems, at temperatures up to 80 °C. The structural analysis by MALDI TOF-MS, NMR, and FT-IR spectroscopy confirmed the formation of cyclic and linear oligoesters, with maximal polymerization degree of 24 and narrow molecular weight distribution (dispersity about 1.1). The operational stability of the biocatalyst was explored during several reuses, while thermal analysis (TG and DSC) indicated a lower thermal stability and higher melting point of the new products, compared to the poly(ε-caprolactone) homopolymer. The presence of the heterocyclic structure in the polymeric chain has promoted both the lipase-catalyzed degradation and the microbial degradation. Although, poly(ε-caprolactone) is a valuable biocompatible polymer with important therapeutic applications, some drawbacks such as low hydrophilicity, low melting point, and relatively slow biodegradability impeded its extensive utilization. In this regard the newly synthesized furan-based oligoesters could represent a "green" improvement route.

13.
Food Chem ; 296: 1-8, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31202292

ABSTRACT

Immobilized lipases are excellent biocatalysts for the enzymatic synthesis of short- and medium-chain fatty esters used as food flavor compounds. Herein a new approach for a magnetic core-shell biocatalyst by immobilization of Candida antarctica B lipase is reported, coating single-core magnetic nanoparticles with an organic shell, preferably poly(benzofurane-co-arylacetic acid), followed by the covalent attachment of the enzyme and embedment of the primary biocatalyst in a silica layer. Although covalent and sol-gel immobilization were efficient on their own, their combination can ensure additional operational stability through multi-point linkages. Moreover, silanes holding glycidoxy groups, which can also form covalent linkages, have been successfully used as precursors for the silica coating layer. The structural, magnetic and morphological characteristics were assessed by TEM, SEM-EDX, X-ray photoelectron spectroscopy and vibrating sample magnetometry. The new biocatalysts demonstrated high catalytic efficiency in the solventless synthesis of isoamyl esters of natural carboxylic acids, also in multiple reaction cycles.


Subject(s)
Esters/metabolism , Fungal Proteins/metabolism , Lipase/metabolism , Magnetite Nanoparticles/chemistry , Biocatalysis , Carboxylic Acids/chemistry , Carboxylic Acids/metabolism , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Esters/analysis , Fungal Proteins/chemistry , Gas Chromatography-Mass Spectrometry , Lipase/chemistry , Silicon Dioxide/chemistry
14.
Biotechnol J ; 13(6): e1700629, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29542861

ABSTRACT

Developments of past years placed the bio-based polyesters as competitive substitutes for fossil-based polymers. Moreover, enzymatic polymerization using lipase catalysts has become an important green alternative to chemical polymerization for the synthesis of polyesters with biomedical applications, as several drawbacks related to the presence of traces of metal catalysts, toxicity and higher temperatures could be avoided. Copolymerization of ϵ-caprolactone (CL) with four hydroxy-fatty acids (HFA) from renewable sources, 10-hydroxystearic acid, 12-hydroxystearic acid, ricinoleic acid, and 16-hydroxyhexadecanoic acid, was carried out using commercially available immobilized lipases from Candida antarctica B, Thermomyces lanuginosus, and Pseudomonas stutzeri, as well as a native lipase. MALDI-TOF-MS and 2D-NMR analysis confirmed the formation of linear/branched and cyclic oligomers with average molecular weight around 1200 and polymerization degree up to 15. The appropriate selection of the biocatalyst and reaction temperature allowed the tailoring of the non-cyclic/cyclic copolymer ratio and increase of the total copolymer content in the reaction product above 80%. The catalytic efficiency of the best performing biocatalyst (Lipozyme TL) is evaluated during four reaction cycles, showing excellent operational stability. The thermal stability of the reaction products is assessed based on TG and DSC analysis. This new synthetic route for biobased oligomers with novel functionalities and properties could have promising biomedical applications.


Subject(s)
Caproates/metabolism , Fatty Acids/metabolism , Lactones/metabolism , Polyesters/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biocatalysis , Biotechnology , Caproates/analysis , Caproates/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Fatty Acids/analysis , Fatty Acids/chemistry , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Lactones/analysis , Lactones/chemistry , Lipase/chemistry , Lipase/metabolism , Polyesters/analysis , Polyesters/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
15.
Acta Biochim Pol ; 61(2): 205-10, 2014.
Article in English | MEDLINE | ID: mdl-24904930

ABSTRACT

The biodegradability and biocompatibility properties of ε-caprolactone homopolymers place it as a valuable raw material, particularly for controlled drug delivery and tissue engineering applications. However, the usefulness of such materials is limited by their low hydrophilicity and slow biodegradation rate. In order to improve polycaprolactone properties and functionalities, copolymerization of ε-caprolactone with δ-gluconolactone was investigated. Since enzymatic reactions involving sugars are usually hindered by the low solubility of these compounds in common organic solvents, finding the best reaction medium was a major objective of this research. The optimal copolymerization conditions were set up by using different organic media (solvent and solvents mixtures), as well as solvent free systems that are able to dissolve (completely or partially) sugars, and are nontoxic for enzymes. Native and immobilized lipases by different immobilization techniques from Candida antarctica B and Thermomyces lanuginosus have been used as biocatalyst at 80°C. Although the main copolymer amount was synthesized in DMSO:t-BuOH (20:80) medium, the highest polymerization degrees, up to 16 for the copolymer product, were achieved in solventless conditions. The products, cyclic and linear polyesters, have been characterized by FT-IR and MALDI-TOF MS analysis. The reaction product analysis revealed the formation of cyclic products that could be the major impediment of further increase of the chain length.


Subject(s)
Caproates/chemistry , Fungal Proteins/chemistry , Gluconates/chemistry , Lactones/chemistry , Lipase/chemistry , Polyesters/chemical synthesis , Biocatalysis , Candida/chemistry , Candida/enzymology , Enzymes, Immobilized , Fungal Proteins/isolation & purification , Hot Temperature , Lipase/isolation & purification , Polymerization , Saccharomycetales/chemistry , Saccharomycetales/enzymology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
16.
Bioprocess Biosyst Eng ; 36(10): 1327-38, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23065015

ABSTRACT

Cellulase from Trichoderma reesei (Celluclast 1.5 L, Novozyme) was immobilized by sol-gel encapsulation, using binary or ternary mixtures of tetramethoxysilane (TMOS) with alkyl- or aryl-substituted trimethoxysilanes as precursors. Optimization of immobilization conditions resulted in 92 % recovery of total enzymatic activity in the best immobilized preparate. The immobilized cellulase exhibiting the highest activity, obtained from tetramethoxysilane and methyltrimethoxysilane precursors at 3:1 molar ratio, was investigated in the hydrolysis reaction of microcrystalline cellulose (Avicel PH101). Although the optimal values did not change significantly, both temperature and pH stabilities of the sol-gel entrapped cellulase improved compared to the native enzyme. Immobilization also conferred superior resistance against the inactivation effect of glucose. Reuse of the sol-gel entrapped cellulase showed 40 % retention of the initial activity after five batch hydrolysis cycles, demonstrating the potential of this biocatalyst for large-scale application.


Subject(s)
Cellulase/metabolism , Cellulose/metabolism , Enzymes, Immobilized/metabolism , Enzyme Stability , Gels , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Substrate Specificity , Temperature , Trichoderma/enzymology
17.
Acta Biochim Pol ; 60(4): 817-22, 2013.
Article in English | MEDLINE | ID: mdl-24432339

ABSTRACT

The enzymatic oxidative polymerization of five technical lignins with different molecular properties, i.e. Soda Grass/Wheat straw Lignin, Organosolv Hardwood Lignin, Soda Wheat straw Lignin, Alkali pretreated Wheat straw Lignin, and Kraft Softwood was studied. All lignins were previously fractionated by acetone/water 50:50 (v/v) and the laccase-catalyzed polymerization of the low molecular weight fractions (Mw < 4000 g/mol) was carried out in the same solvent system. Reactivity of lignin substrates in laccase-catalyzed reactions was determined by monitoring the oxygen consumption. The oxidation reactions in 50% acetone in water mixture proceed with high rate for all tested lignins. Polymerization products were analyzed by size exclusion chromatography, FT-IR, and (31)P-NMR and evidence of important lignin modifications after incubation with laccase. Lignin polymers with higher molecular weight (Mw up to 17500 g/mol) were obtained. The obtained polymers have potential for applications in bioplastics, adhesives and as polymeric dispersants.


Subject(s)
Laccase/chemistry , Lignin/chemistry , Triticum/chemistry , Acetone/chemistry , Chromatography, Gel , Laccase/metabolism , Lignin/metabolism , Oxidation-Reduction , Polymerization , Solvents/chemistry , Spectroscopy, Fourier Transform Infrared , Triticum/metabolism , Water/chemistry
18.
Molecules ; 17(11): 13045-61, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23124473

ABSTRACT

Sol-gel entrapment is an efficient immobilization technique that allows preparation of robust and highly stable biocatalysts. Lipase from Candida antarctica B was immobilized by sol-gel entrapment and by sol-gel entrapment combined with adsorption on Celite 545, using a ternary silane precursor system. After optimization of the immobilization protocol, the best enzyme loading was 17.4 mg/g support for sol-gel entrapped lipase and 10.7 mg/g support for samples obtained by entrapment and adsorption. Sol-gel immobilized enzymes showed excellent values of enantiomeric ratio E and activity when ionic liquid 1-octyl-3-methyl-imidazolium tetrafluoroborate was used as additive. Immobilization increased the stability of the obtained biocatalysts in several organic solvents. Excellent operational stability was obtained for the immobilized lipase, maintaining unaltered catalytic activity and enantioselectivity during 15 reuse cycles. The biocatalysts were characterized using scanning electron microscopy (SEM) and fluorescence microscopy. The improved catalytic efficiency of entrapped lipases recommends their application for large-scale kinetic resolution of optically active secondary alcohols.


Subject(s)
Diatomaceous Earth/chemistry , Enzymes, Immobilized/chemistry , Fungal Proteins/chemistry , Lipase/chemistry , Octanols/chemistry , Acylation , Adsorption , Biocatalysis , Enzyme Stability , Esterification , Gels , Green Chemistry Technology , Imidazoles/chemistry , Ionic Liquids/chemistry , Kinetics , Solvents/chemistry , Stereoisomerism , Vinyl Compounds
19.
Appl Microbiol Biotechnol ; 75(4): 751-62, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17387469

ABSTRACT

The depletion in fossil feedstocks, increasing oil prices, and the ecological problems associated with CO2 emissions are forcing the development of alternative resources for energy, transport fuels, and chemicals: the replacement of fossil resources with CO2 neutral biomass. Allied with this, the conversion of crude oil products utilizes primary products (ethylene, etc.) and their conversion to either materials or (functional) chemicals with the aid of co-reagents such as ammonia and various process steps to introduce functionalities such as -NH2 into the simple structures of the primary products. Conversely, many products found in biomass often contain functionalities. Therefore, it is attractive to exploit this to bypass the use, and preparation of, co-reagents as well as eliminating various process steps by utilizing suitable biomass-based precursors for the production of chemicals. It is the aim of this mini-review to describe the scope of the possibilities to generate current functionalized chemical materials using amino acids from biomass instead of fossil resources, thereby taking advantage of the biomass structure in a more efficient way than solely utilizing biomass for the production of fuels or electricity.


Subject(s)
Amino Acids/metabolism , Biomass , Chemical Industry , Energy-Generating Resources , Proteins/metabolism , Biotechnology , Biotransformation , Chemical Industry/economics , Energy-Generating Resources/economics , Fermentation
SELECTION OF CITATIONS
SEARCH DETAIL
...