Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(11): e21417, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37942160

ABSTRACT

The gas and water vapor permeabilities of graphene-based membranes can be affected by the presence of different functional groups directly bound to the graphene network. In this work, one type of carboxylated graphene oxide (GO-COOH) and two types of graphene oxide synthesized i) under strong oxidative conditions directly from graphite (GO-1) and ii) under mild oxidative conditions from exfoliated graphene (GO-2) were used as precursors of self-standing membranes prepared with thicknesses in the range of 12-55 µm via slow-vacuum filtration preparation method. It was observed that the permeabilities for all tested gases decreased in order GO-2 > GO-1 > GO-COOH and depended on both the arrangement of graphene sheets and their functionalization. The GO-1 membrane with a high content of oxygen-containing groups showed the best performance for water vapor permeability. The GO-2 membrane with a thickness of 43 µm exhibited a disordered GO sheet morphology and, therefore, unique gas-separation performance towards H2/CO2 gas pair, showing high hydrogen permeability while keeping extremely high H2/CO2 ideal selectivity that exceeds the Robeson 2008 upper bound of polymer membranes.

2.
Nanomaterials (Basel) ; 9(4)2019 Apr 16.
Article in English | MEDLINE | ID: mdl-31014037

ABSTRACT

Currently, highly demanded biodegradable or bio-sourced plastics exhibit inherent drawbacks due to their limited processability and end-use properties (barrier, mechanical, etc.). To overcome all of these shortcomings, the incorporation of lamellar inorganic particles, such as layered double hydroxides (LDH) seems to be appropriate. However, LDH delamination and homogenous dispersion in a polymer matrix without use of harmful solvents, remains a challenging issue, which explains why LDH-based polymer nanocomposites have not been scaled-up yet. In this work, LDH with intercalated ionic liquid (IL) anions were synthesized by a direct co-precipitation method in the presence of phosphonium IL and subsequently used as functional nanofillers for in-situ preparation of poly (butylene adipate-co-terephthalate) (PBAT) nanocomposites. The intercalated IL-anions promoted LDH swelling in monomers and LDH delamination during the course of in-situ polycondensation, which led to the production of PBAT/LDH nanocomposites with intercalated and exfoliated morphology containing well-dispersed LDH nanoplatelets. The prepared nanocomposite films showed improved water vapor permeability and mechanical properties and slightly increased crystallization degree and therefore can be considered excellent candidates for food packaging applications.

3.
Bioresour Technol ; 270: 643-655, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30213541

ABSTRACT

This review article focuses on an assessment of the innovative Gas Separation Membrane Bioreactor (GS-MBR), which is an emerging technology because of its potential for in-situ biohydrogen production and separation. The GS-MBR, as a special membrane bioreactor, enriches CO2 directly from the headspace of the anaerobic H2 fermentation process. CO2 can be fed as a substrate to auxiliary photo-bioreactors to grow microalgae as a promising raw material for biocatalyzed, dark fermentative H2-evolution. Overall, these features make the GS-MBR worthy of study. To the best of the authors' knowledge, the GS-MBR has not been studied in detail to date; hence, a comprehensive review of this topic will be useful to the scientific community.


Subject(s)
Bioreactors , Hydrogen/metabolism , Fermentation , Gases , Membranes, Artificial
4.
Nanomaterials (Basel) ; 7(10)2017 Sep 28.
Article in English | MEDLINE | ID: mdl-28956811

ABSTRACT

In this work, phosphonium ionic liquids (ILs) based on tetra-alkylphosphonium cations combined with carboxylate, phosphate and phosphinate anions, were used for organic modification of layered double hydroxide (LDH). Two different amounts (2 and 5 wt %) of the organically modified LDHs were mixed with poly(butylene adipate-co-terephthalate) (PBAT) matrix by melt extrusion. All prepared PBAT/IL-modified-LDH composites exhibited increased mechanical properties (20-50% Young's modulus increase), decreased water vapor permeability (30-50% permeability coefficient reduction), and slight decreased crystallinity (10-30%) compared to the neat PBAT.

SELECTION OF CITATIONS
SEARCH DETAIL
...