Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
3.
Nat Commun ; 15(1): 264, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238311

ABSTRACT

Alzheimer's disease (AD) is characterized by progressive neurodegeneration, but the specific events that cause cell death remain poorly understood. Death Induced by Survival gene Elimination (DISE) is a cell death mechanism mediated by short (s) RNAs acting through the RNA-induced silencing complex (RISC). DISE is thus a form of RNA interference, in which G-rich 6mer seed sequences in the sRNAs (position 2-7) target hundreds of C-rich 6mer seed matches in genes essential for cell survival, resulting in the activation of cell death pathways. Here, using Argonaute precipitation and RNAseq (Ago-RP-Seq), we analyze RISC-bound sRNAs to quantify 6mer seed toxicity in several model systems. In mouse AD models and aging brain, in induced pluripotent stem cell-derived neurons from AD patients, and in cells exposed to Aß42 oligomers, RISC-bound sRNAs show a shift to more toxic 6mer seeds compared to controls. In contrast, in brains of "SuperAgers", humans over age 80 who have superior memory performance, RISC-bound sRNAs are shifted to more nontoxic 6mer seeds. Cells depleted of nontoxic sRNAs are sensitized to Aß42-induced cell death, and reintroducing nontoxic RNAs is protective. Altogether, the correlation between DISE and Aß42 toxicity suggests that increasing the levels of nontoxic miRNAs in the brain or blocking the activity of toxic RISC-bound sRNAs could ameliorate neurodegeneration.


Subject(s)
Alzheimer Disease , MicroRNAs , Mice , Animals , Humans , Aged, 80 and over , Alzheimer Disease/genetics , MicroRNAs/genetics , RNA-Induced Silencing Complex/genetics , RNA Interference , Aging/genetics , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/toxicity
4.
Mol Ther Nucleic Acids ; 33: 773, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37655044
6.
J Virol ; 97(7): e0065223, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37310263

ABSTRACT

HIV-1 (HIV) infects CD4+ T cells, the gradual depletion of which can lead to AIDS in the absence of antiretroviral therapy (ART). Some cells, however, survive HIV infection and persist as part of the latently infected reservoir that causes recurrent viremia after ART cessation. Improved understanding of the mechanisms of HIV-mediated cell death could lead to a way to clear the latent reservoir. Death induced by survival gene elimination (DISE), an RNA interference (RNAi)-based mechanism, kills cells through short RNAs (sRNAs) with toxic 6-mer seeds (positions 2 to 7 of sRNA). These toxic seeds target the 3' untranslated region (UTR) of mRNAs, decreasing the expression of hundreds of genes critical for cell survival. In most cells under normal conditions, highly expressed cell-encoded nontoxic microRNAs (miRNAs) block access of toxic sRNAs to the RNA-induced silencing complex (RISC) that mediates RNAi, promoting cell survival. HIV has been shown to inhibit the biogenesis of host miRNAs in multiple ways. We now report that HIV infection of cells deficient in miRNA expression or function results in enhanced RISC loading of an HIV-encoded miRNA HIV-miR-TAR-3p, which can kill cells by DISE through a noncanonical (positions 3 to 8) 6-mer seed. In addition, cellular RISC-bound sRNAs shift to lower seed viability. This also occurs after latent HIV provirus reactivation in J-Lat cells, suggesting independence of permissiveness of cells to viral infection. More precise targeting of the balance between protective and cytotoxic sRNAs could provide new avenues to explore novel cell death mechanisms that could be used to kill latent HIV. IMPORTANCE Several mechanisms by which initial HIV infection is cytotoxic to infected cells have been reported and involve various forms of cell death. Characterizing the mechanisms underlying the long-term survival of certain T cells that become persistent provirus reservoirs is critical to developing a cure. We recently discovered death induced by survival gene elimination (DISE), an RNAi-based mechanism of cell death whereby toxic short RNAs (sRNAs) containing 6-mer seed sequences (exerting 6-mer seed toxicity) targeting essential survival genes are loaded into RNA-induced silencing complex (RISC) complexes, resulting in inescapable cell death. We now report that HIV infection in cells with low miRNA expression causes a shift of mostly cellular RISC-bound sRNAs to more toxic seeds. This could prime cells to DISE and is further enhanced by the viral microRNA (miRNA) HIV-miR-TAR-3p, which carries a toxic noncanonical 6-mer seed. Our data provide multiple new avenues to explore novel cell death mechanisms that could be used to kill latent HIV.


Subject(s)
HIV Infections , HIV-1 , MicroRNAs , Humans , HIV-1/physiology , Virus Latency/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA-Induced Silencing Complex/metabolism
7.
Mol Biomed ; 4(1): 11, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37059938

ABSTRACT

CD95/Fas ligand (CD95L) induces apoptosis through protein binding to the CD95 receptor. However, CD95L mRNA also induces toxicity in the absence of CD95 through induction of DISE (Death Induced by Survival Gene Elimination), a form of cell death mediated by RNA interference (RNAi). We now report that CD95L mRNA processing generates a short (s)RNA nearly identical to shL3, a commercial CD95L-targeting shRNA that led to the discovery of DISE. Neither of the miRNA biogenesis proteins Drosha nor Dicer are required for this processing. Interestingly, CD95L toxicity depends on the core component of the RISC, Ago2, in some cell lines, but not in others. In the HCT116 colon cancer cell line, Ago 1-4 appear to function redundantly in RNAi. In fact, Ago 1/2/3 knockout cells retain sensitivity to CD95L mRNA toxicity. Toxicity was only blocked by mutation of all in-frame start codons in the CD95L ORF. Dying cells exhibited an enrichment of RISC bound (R)-sRNAs with toxic 6mer seed sequences, while expression of the non-toxic CD95L mutant enriched for loading of R-sRNAs with nontoxic 6mer seeds. However, CD95L is not the only source of these R-sRNAs. We find that CD95L mRNA may induce DISE directly and indirectly, and that alternate mechanisms may underlie CD95L mRNA processing and toxicity.

8.
Biochem Soc Trans ; 51(1): 21-29, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36629505

ABSTRACT

The role of CD95/Fas ligand (CD95L/FasL) in the induction of CD95-mediated extrinsic apoptosis is well characterized. Trimerized, membrane-bound CD95L ligates the CD95 receptor activating downstream signaling resulting in the execution of cells by caspase proteins. However, the expression of CD95L has been reported to induce cell death in contexts in which this pathway is unlikely to be activated, such as in cell autonomous activation induced cell death (AICD) and in CD95-resistant cancer cell lines. Recent data suggests that the CD95L mRNA exerts toxicity through death induced by survival gene elimination (DISE). DISE results from the targeting of networks of survival genes by toxic short RNA (sRNA)s in the RNA-induced silencing complex (RISC). CD95L mRNA contributes to this death directly, through the processing of its mRNA into toxic sRNAs that are loaded into the RISC, and indirectly, by promoting the loading of other toxic sRNAs. Interestingly, CD95L is not the only mRNA that is processed and loaded into the RISC. Protein-coding mRNAs involved in protein translation are also selectively loaded. We propose a model in which networks of mRNA-derived sRNAs modulate DISE, with networks of genes providing non-toxic RISC substrate sRNAs that protect against DISE, and opposing networks of stress-activated genes that produce toxic RISC substrate sRNAs that promote DISE.


Subject(s)
Apoptosis , fas Receptor , Fas Ligand Protein/genetics , Fas Ligand Protein/metabolism , fas Receptor/metabolism , Apoptosis/physiology , Caspases , RNA, Messenger/genetics
9.
Cell Death Dis ; 13(12): 1078, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36585400

ABSTRACT

Extended CAG trinucleotide repeats (TNR) in the genes huntingtin (HTT) and androgen receptor (AR) are the cause of two progressive neurodegenerative disorders: Huntington's disease (HD) and Spinal and Bulbar Muscular Atrophy (SBMA), respectively. Anyone who inherits the mutant gene in the complete penetrance range (>39 repeats for HD and 44 for SBMA) will develop the disease. An inverse correlation exists between the length of the CAG repeat and the severity and age of onset of the diseases. Growing evidence suggests that it is the length of uninterrupted CAG repeats in the mRNA rather than the length of poly glutamine (polyQ) in mutant (m)HTT protein that determines disease progression. One variant of mHTT (loss of inhibition; LOI) causes a 25 year earlier onset of HD when compared to a reference sequence, despite both coding for a protein that contains an identical number of glutamines. Short 21-22 nt CAG repeat (sCAGs)-containing RNAs can cause disease through RNA interference (RNAi). RNA hairpins (HPs) forming at the CAG TNRs are stabilized by adjacent CCG (in HD) or CUG repeats (in SBMA) making them better substrates for Dicer, the enzyme that processes CAG HPs into sCAGs. We now show that cells deficient in Dicer or unable to mediate RNAi are resistant to the toxicity of the HTT and AR derived HPs. Expression of a small HP that mimics the HD LOI variant is more stable and more toxic than a reference HP. We report that the LOI HP is processed by Dicer, loaded into the RISC more efficiently, and gives rise to a higher quantity of RISC-bound 22 nt sCAGs. Our data support the notion that RNAi contributes to the cell death seen in HD and SBMA and provide an explanation for the dramatically reduced onset of disease in HD patients that carry the LOI variant.


Subject(s)
Huntington Disease , Trinucleotide Repeat Expansion , Humans , RNA Interference , Trinucleotide Repeat Expansion/genetics , Trinucleotide Repeats/genetics , Huntington Disease/genetics , Huntington Disease/metabolism , RNA, Messenger/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism
10.
PLoS Comput Biol ; 18(3): e1010022, 2022 03.
Article in English | MEDLINE | ID: mdl-35358200

ABSTRACT

microRNAs (miRNAs) are (18-22nt long) noncoding short (s)RNAs that suppress gene expression by targeting the 3' untranslated region of target mRNAs. This occurs through the seed sequence located in position 2-7/8 of the miRNA guide strand, once it is loaded into the RNA induced silencing complex (RISC). G-rich 6mer seed sequences can kill cells by targeting C-rich 6mer seed matches located in genes that are critical for cell survival. This results in induction of Death Induced by Survival gene Elimination (DISE), through a mechanism we have called 6mer seed toxicity. miRNAs are often quantified in cells by aligning the reads from small (sm)RNA sequencing to the genome. However, the analysis of any smRNA Seq data set for predicted 6mer seed toxicity requires an alternative workflow, solely based on the exact position 2-7 of any short (s)RNA that can enter the RISC. Therefore, we developed SPOROS, a semi-automated pipeline that produces multiple useful outputs to predict and compare 6mer seed toxicity of cellular sRNAs, regardless of their nature, between different samples. We provide two examples to illustrate the capabilities of SPOROS: Example one involves the analysis of RISC-bound sRNAs in a cancer cell line (either wild-type or two mutant lines unable to produce most miRNAs). Example two is based on a publicly available smRNA Seq data set from postmortem brains (either from normal or Alzheimer's patients). Our methods (found at https://github.com/ebartom/SPOROS and at Code Ocean: https://doi.org/10.24433/CO.1732496.v1) are designed to be used to analyze a variety of smRNA Seq data in various normal and disease settings.


Subject(s)
MicroRNAs , 3' Untranslated Regions , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , Seeds/genetics , Sequence Analysis, RNA/methods
11.
Sci Rep ; 12(1): 5130, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35332222

ABSTRACT

6mer seed toxicity is a novel cell death mechanism that kills cancer cells by triggering death induced by survival gene elimination (DISE). It is based on si- or shRNAs with a specific G-rich nucleotide composition in position 2-7 of their guide strand. An arrayed screen of 4096 6mer seeds on two human and two mouse cell lines identified G-rich 6mers as the most toxic seeds. We have now tested two additional cell lines, one human and one mouse, identifying the GGGGGC consensus as the most toxic average 6mer seed for human cancer cells while slightly less significant for mouse cancer cells. RNA Seq and bioinformatics analyses suggested that an siRNA containing the GGGGGC seed (siGGGGGC) is toxic to cancer cells by targeting GCCCCC seed matches located predominantly in the 3' UTR of a set of genes critical for cell survival. We have identified several genes targeted by this seed and demonstrate direct and specific targeting of GCCCCC seed matches, which is attenuated upon mutation of the GCCCCC seed matches in these 3' UTRs. Our data show that siGGGGGC kills cancer cells through its miRNA-like activity and points at artificial miRNAs, si- or shRNAs containing this seed as a potential new cancer therapeutics.


Subject(s)
MicroRNAs , Neoplasms , 3' Untranslated Regions , Animals , Consensus , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Seeds/genetics , Seeds/metabolism
12.
iScience ; 24(12): 103538, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34917906

ABSTRACT

CD95 expression is preserved in triple-negative breast cancers (TNBCs), and CD95 loss in these cells triggers the induction of a pro-inflammatory program, promoting the recruitment of cytotoxic NK cells impairing tumor growth. Herein, we identify a novel interaction partner of CD95, Kip1 ubiquitination-promoting complex protein 2 (KPC2), using an unbiased proteomic approach. Independently of CD95L, CD95/KPC2 interaction contributes to the partial degradation of p105 (NF-κB1) and the subsequent generation of p50 homodimers, which transcriptionally represses NF-κB-driven gene expression. Mechanistically, KPC2 interacts with the C-terminal region of CD95 and serves as an adaptor to recruit RelA (p65) and KPC1, which acts as E3 ubiquitin-protein ligase promoting the degradation of p105 into p50. Loss of CD95 in TNBC cells releases KPC2, limiting the formation of the NF-κB inhibitory homodimer complex (p50/p50), promoting NF-κB activation and the production of pro-inflammatory cytokines, which might contribute to remodeling the immune landscape in TNBC cells.

13.
J Exp Clin Cancer Res ; 40(1): 389, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34893072

ABSTRACT

micro(mi)RNAs are short noncoding RNAs that through their seed sequence (pos. 2-7/8 of the guide strand) regulate cell function by targeting complementary sequences (seed matches) located mostly in the 3' untranslated region (3' UTR) of mRNAs. Any short RNA that enters the RNA induced silencing complex (RISC) can kill cells through miRNA-like RNA interference when its 6mer seed sequence (pos. 2-7 of the guide strand) has a G-rich nucleotide composition. G-rich seeds mediate 6mer Seed Toxicity by targeting C-rich seed matches in the 3' UTR of genes critical for cell survival. The resulting Death Induced by Survival gene Elimination (DISE) predominantly affects cancer cells but may contribute to cell death in other disease contexts. This review summarizes recent findings on the role of DISE/6mer Seed Tox in cancer; its therapeutic potential; its contribution to therapy resistance; its selectivity, and why normal cells are protected. In addition, we explore the connection between 6mer Seed Toxicity and aging in relation to cancer and certain neurodegenerative diseases.


Subject(s)
DEAD-box RNA Helicases/metabolism , Neoplasms/drug therapy , RNA Interference/immunology , Ribonuclease III/metabolism , Seeds/chemistry , Animals , Cell Death , Humans
14.
iScience ; 24(11): 103348, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34816102

ABSTRACT

The apoptosis inducing receptor CD95/Fas has multiple tumorigenic activities. In different genetically engineered mouse models tumor-expressed CD95 was shown to be critical for cell growth. Using a combination of immune-deficient and immune-competent mouse models, we now establish that loss of CD95 in metastatic triple negative breast cancer (TNBC) cells prevents tumor growth by modulating the immune landscape. CD95-deficient, but not wild-type, tumors barely grow in an immune-competent environment and show an increase in immune infiltrates into the tumor. This growth reduction is caused by infiltrating NK cells and does not involve T cells or macrophages. In contrast, in immune compromised mice CD95 k.o. cells are not growth inhibited, but they fail to form metastases. In summary, we demonstrate that in addition to its tumor and metastasis promoting activities, CD95 expression by tumor cells can exert immune suppressive activities on NK cells, providing a new target for immune therapy.

15.
Cancer Res ; 81(15): 3985-4000, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34224372

ABSTRACT

Ovarian cancer remains one of the deadliest gynecologic malignancies affecting women, and development of resistance to platinum remains a major barrier to achieving a cure. Multiple mechanisms have been identified to confer platinum resistance. Numerous miRNAs have been linked to platinum sensitivity and resistance in ovarian cancer. miRNA activity occurs mainly when the guide strand of the miRNA, with its seed sequence at position 2-7/8, is loaded into the RNA-induced silencing complex (RISC) and targets complementary short seed matches in the 3' untranslated region of mRNAs. Toxic 6mer seeds, which target genes critical for cancer cell survival, have been found in tumor-suppressive miRNAs. Many siRNAs and short hairpin RNAs (shRNA) can also kill cancer cells via toxic seeds, the most toxic of which carry G-rich 6mer seed sequences. We showed here that treatment of ovarian cancer cells with platinum led to increased RISC-bound miRNAs carrying toxic 6mer seeds and decreased miRNAs with nontoxic seeds. Platinum-tolerant cells did not exhibit this toxicity shift but retained sensitivity to cell death mediated by siRNAs carrying toxic 6mer seeds. Analysis of RISC-bound miRNAs in tumors from patients with ovarian cancer revealed that the ratio between miRNAs with toxic versus nontoxic seeds was predictive of treatment outcome. Application of the 6mer seed toxicity concept to cancer relevant miRNAs provides a new framework for understanding and predicting cancer therapy responses. SIGNIFICANCE: These findings demonstrate that the balance of miRNAs that carry toxic and nontoxic 6mer seeds contributes to platinum resistance in ovarian cancer.


Subject(s)
MicroRNAs/metabolism , Ovarian Neoplasms/drug therapy , Platinum/therapeutic use , Female , Humans , Platinum/pharmacology
16.
Cancer Res ; 81(2): 384-399, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33172933

ABSTRACT

Defining traits of platinum-tolerant cancer cells could expose new treatment vulnerabilities. Here, new markers associated with platinum-tolerant cells and tumors were identified using in vitro and in vivo ovarian cancer models treated repetitively with carboplatin and validated in human specimens. Platinum-tolerant cells and tumors were enriched in ALDH+ cells, formed more spheroids, and expressed increased levels of stemness-related transcription factors compared with parental cells. Additionally, platinum-tolerant cells and tumors exhibited expression of the Wnt receptor Frizzled-7 (FZD7). Knockdown of FZD7 improved sensitivity to platinum, decreased spheroid formation, and delayed tumor initiation. The molecular signature distinguishing FZD7+ from FZD7- cells included epithelial-to-mesenchymal (EMT), stemness, and oxidative phosphorylation-enriched gene sets. Overexpression of FZD7 activated the oncogenic factor Tp63, driving upregulation of glutathione metabolism pathways, including glutathione peroxidase 4 (GPX4), which protected cells from chemotherapy-induced oxidative stress. FZD7+ platinum-tolerant ovarian cancer cells were more sensitive and underwent ferroptosis after treatment with GPX4 inhibitors. FZD7, Tp63, and glutathione metabolism gene sets were strongly correlated in the ovarian cancer Tumor Cancer Genome Atlas (TCGA) database and in residual human ovarian cancer specimens after chemotherapy. These results support the existence of a platinum-tolerant cell population with partial cancer stem cell features, characterized by FZD7 expression and dependent on the FZD7-ß-catenin-Tp63-GPX4 pathway for survival. The findings reveal a novel therapeutic vulnerability of platinum-tolerant cancer cells and provide new insight into a potential "persister cancer cell" phenotype. SIGNIFICANCE: Frizzled-7 marks platinum-tolerant cancer cells harboring stemness features and altered glutathione metabolism that depend on GPX4 for survival and are highly susceptible to ferroptosis.


Subject(s)
Biomarkers, Tumor/metabolism , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Ferroptosis , Frizzled Receptors/metabolism , Neoplastic Stem Cells/drug effects , Ovarian Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Female , Frizzled Receptors/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Nude , Middle Aged , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
17.
Sci Rep ; 10(1): 1310, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992798

ABSTRACT

CD95/Fas is an apoptosis inducing death receptor. However, it also has multiple nonapoptotic activities that are tumorigenic. Chronic stimulation of CD95 on breast cancer cells can increase their cancer initiating capacity through activation of a type I interferon (IFN-I)/STAT1 pathway when caspases are inhibited. We now show that this activity relies on the canonical components of the CD95 death-inducing signaling complex, FADD and caspase-8, and on the activation of NF-κB. We identified caspase-2 as the antagonistic caspase that downregulates IFN-I production. Once produced, IFN-Is bind to their receptors activating both STAT1 and STAT2 resulting in upregulation of the double stranded (ds)RNA sensor proteins RIG-I and MDA5, and a release of a subset of endogenous retroviruses. Thus, CD95 is part of a complex cell autonomous regulatory network that involves activation of innate immune components that drive cancer stemness and contribute to therapy resistance.


Subject(s)
Breast Neoplasms/metabolism , Interferon Type I/metabolism , Neoplastic Stem Cells/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction , fas Receptor/metabolism , Breast Neoplasms/etiology , Breast Neoplasms/pathology , Caspase 8/metabolism , Cell Death , Fas-Associated Death Domain Protein/metabolism , Female , Humans , Immunity , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/metabolism , Mitochondria/metabolism , NF-kappa B/metabolism , Neoplastic Stem Cells/pathology , RNA, Double-Stranded/genetics , RNA, Double-Stranded/immunology
18.
iScience ; 23(2): 100737, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-31838022

ABSTRACT

MicroRNAs (miRNAs) are short double-stranded noncoding RNAs (19-23 nucleotides) that regulate gene expression by suppressing mRNAs through RNA interference. Targeting is determined by the seed sequence (position 2-7/8) of the mature miRNA. A minimal G-rich seed of just six nucleotides is highly toxic to cells by targeting genes essential for cell survival. A screen of 215 miRNAs encoded by 17 human pathogenic viruses (v-miRNAs) now suggests that a number of v-miRNAs can kill cells through a G-rich 6mer sequence embedded in their seed. Specifically, we demonstrate that miR-K12-6-5p, an oncoviral mimic of the tumor suppressive miR-15/16 family encoded by human Kaposi sarcoma-associated herpes virus, harbors a noncanonical toxic 6mer seed (position 3-8) and that v-miRNAs are more likely than cellular miRNAs to utilize a noncanonical 6mer seed. Our data suggest that during evolution viruses evolved to use 6mer seed toxicity to kill cells.

19.
Front Immunol ; 9: 2521, 2018.
Article in English | MEDLINE | ID: mdl-30443253

ABSTRACT

Fas (CD95/APO-1) and its ligand (FasL/CD95L) promote the resolution of type 2 lung inflammation and eosinophilia. We previously found that Fas-deficiency on T cells, but not eosinophils, delayed resolution of inflammation. However, Fas can signal both cell death and have a positive signaling function that can actually activate cells. In this study, we investigated whether Fas-induced death or Fas-activated signaling pathways promote resolution of allergic lung inflammation. By increasing T cell survival through two Fas-independent pathways, using Bim-deficient T cells or Bcl-xL overexpressing T cells, no differences in resolution of Th2-mediated inflammation was observed. Furthermore, Th2 cells were inherently resistant to Fas-mediated apoptosis and preferentially signaled through non-apoptotic pathways following FasL treatment. Utilizing Fas-mutant mice deficient in apoptotic but sufficient for non-apoptotic Fas signaling pathways, we demonstrate that non-apoptotic Fas signaling in T cells drives resolution of Th2-mediated airway inflammation. Our findings reveal a previously unknown role for non-apoptotic Fas signaling on Th2 cells in the induction of resolution of type 2 inflammation.


Subject(s)
Apoptosis/immunology , Pneumonia/immunology , T-Lymphocytes/immunology , Th2 Cells/immunology , fas Receptor/immunology , Animals , Inflammation Mediators/immunology , Mice , Mice, Inbred C57BL , Signal Transduction/immunology
20.
Trends Cancer ; 4(10): 684-700, 2018 10.
Article in English | MEDLINE | ID: mdl-30292352

ABSTRACT

Many neurodegenerative diseases are caused by unstable trinucleotide repeat (TNR) expansions located in disease-associated genes. siRNAs based on CAG repeat expansions effectively kill cancer cell lines in vitro through RNAi. They also cause significant reduction in tumor growth in a human ovarian cancer mouse model with no toxicity to the treated mice. This suggests that cancer cells are particularly sensitive to CAG TNR-derived siRNAs, and explains a reported inverse correlation between the length of CAG TNRs and reduced global cancer incidences in some CAG TNR diseases. This review discusses both mutant proteins and mutant RNAs as a cause of TNR diseases, with a focus on RNAi and its role in contributing to disease pathology and in suppressing cancer.


Subject(s)
Genetic Therapy/methods , Neoplasms/therapy , Neurodegenerative Diseases/genetics , RNA Interference , Trinucleotide Repeat Expansion/genetics , Carcinogenesis/genetics , Comorbidity , Humans , Incidence , Molecular Targeted Therapy/methods , Neoplasms/epidemiology , Neoplasms/genetics , Neurodegenerative Diseases/epidemiology , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...