Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Fish Physiol Biochem ; 50(2): 557-574, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38193995

ABSTRACT

Research on antioxidant biomarkers can generate profound insights into the defense mechanisms of fish larvae against different stressors and can reveal manipulation strategies for improved growth and survival. However, the number of samples to process and unavailability of required infrastructure in larval-rearing facilities limit the immediate processing, requiring the preservation of specimens. Silver pompano (Trachinotus blochii), a potential marine aquaculture species, shows a low larval survival rate due to poorly developed antioxidant mechanism. In this context, 39 storage conditions, including three storage temperatures and different buffers, were scrutinized to select the most suitable preservation strategy for five important antioxidant biomarkers of fish larvae, viz. catalase activity, superoxide dismutase (SOD) activity, measurement of lipid peroxidation, reduced glutathione (GSH), and ascorbic acid contents. The paper proposes the optimum larval storage conditions for these five evaluated antioxidant biomarkers to generate similar results in preserved and non-preserved larval samples. Larval samples preserved in PBS at lower temperatures (- 20 °C and - 80 °C) are recommended for evaluating catalase activity and ascorbic acid content. Catalase activity can also be evaluated by preserving the larval samples at - 20 °C or - 80 °C without buffers. Larval samples held in PBS or without any buffers at - 20 °C and at - 80 °C were found to be suitable for SOD and GSH evaluation, respectively. Preservation in 50% glacial acetic acid at - 80 °C or - 20 °C was preferred for the lipid peroxidation assays. Apart from methodological perspectives, the paper provides insights into the dynamics of larval antioxidant profiles of T. blochii, for the first time.


Subject(s)
Antioxidants , Superoxide Dismutase , Animals , Antioxidants/metabolism , Catalase/metabolism , Larva/metabolism , Superoxide Dismutase/metabolism , Ascorbic Acid , Glutathione , Fishes/metabolism , Biomarkers/metabolism , Lipid Peroxidation , Oxidative Stress
2.
Environ Sci Pollut Res Int ; 30(49): 107681-107692, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37740157

ABSTRACT

Vibrio parahaemolyticus, a potent human and aquatic pathogen, is usually found in estuaries and oceans. Human illness is associated with consuming uncooked/partially cooked contaminated seafood. The study on bivalve-associated V. parahaemolyticus revealed that the post-monsoon season had the highest bacterial abundance (9 ± 1.5 log cfu) compared to the monsoon season (8.03 ± 0.56 log cfu). Antimicrobial resistance (AMR) profiling was performed on 114 V. parahaemolyticus isolates obtained from bivalves. The highest AMR was observed against ampicillin (78%). Chloramphenicol was found to be effective against all the isolates. Multiple antibiotic resistance index values of 0.2 or higher were detected in 18% of the isolates. Molecular analysis of antimicrobial resistant genes (ARGs) revealed the high prevalence (100%) of the TEM-1 gene in the aquatic environment. After plasmid profiling and curing, 41.6% and 100% of the resistant isolates were found to be sensitive to ampicillin and cephalosporins, respectively, indicating the prevalence of plasmid-associated ARGs in the aquatic environment. A study to evaluate the antagonistic properties of Bacillus subtilis, Pseudomonas aeruginosa, and Bacillus amyloliquefaciens against V. parahaemolyticus isolates identified the potential of these bacteria to resist the growth of V. parahaemolyticus.


Subject(s)
Bivalvia , Vibrio parahaemolyticus , Animals , Humans , Anti-Bacterial Agents/pharmacology , Vibrio parahaemolyticus/genetics , Seafood/microbiology , Drug Resistance, Bacterial/genetics , Ampicillin
3.
PLoS One ; 6(6): e21272, 2011.
Article in English | MEDLINE | ID: mdl-21731689

ABSTRACT

BACKGROUND: The Malabar snakehead Channa diplogramma is one of the most enigmatic and least understood species within the family Channidae, which comprise one of the most important groups of freshwater food fish in tropical Asia. Since its description from peninsular India in 1865, it has remained a taxonomic puzzle with many researchers questioning its validity, based on its striking similarity with the South East Asian C. micropeltes. In this study, we assessed the identity of the Malabar snakehead, C. diplogramma, using morphological and molecular genetic analyses, and also evaluated its phylogenetic relationships and evolutionary biogeography. METHODOLOGY/PRINCIPAL FINDINGS: The morphometric and meristic analysis provided conclusive evidence to separate C. diplogramma and C. micropeltes as two distinct species. Number of caudal fin rays, lateral line scales, scales below lateral line; total vertebrae, pre-anal length and body depth were the most prominent characters that can be used to differentiate both the species. Channa diplogramma also shows several ontogenic color phases during its life history, which is shared with C. micropeltes. Finally, the genetic distance between both species for the partial mitochondrial 16S rRNA and COI sequences is also well above the intra-specific genetic distances of any other channid species compared in this study. CONCLUSIONS/SIGNIFICANCE: The current distribution of C. diplogramma and C. micropeltes is best explained by vicariance. The significant variation in the key taxonomic characters and the results of the molecular marker analysis points towards an allopatric speciation event or vicariant divergence from a common ancestor, which molecular data suggests to have occurred as early as 21.76 million years ago. The resurrection of C. diplogramma from the synonymy of C. micropeltes has hence been confirmed 146 years after its initial description and 134 years after it was synonymised, establishing it is an endemic species of peninsular India and prioritizing its conservation value.


Subject(s)
Biological Evolution , Fishes/classification , Fishes/genetics , Animals , Fishes/anatomy & histology , Genetic Variation , Geography , India , Molecular Sequence Data , Phylogeny , Principal Component Analysis , Reproducibility of Results , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...