Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 10: 194, 2010 Jul 20.
Article in English | MEDLINE | ID: mdl-20646294

ABSTRACT

BACKGROUND: Mycoplasma suis belongs to a group of highly specialized hemotrophic bacteria that attach to the surface of host erythrocytes. Hemotrophic mycoplasmas are uncultivable and the genomes are not sequenced so far. Therefore, there is a need for the clarification of essential metabolic pathways which could be crucial barriers for the establishment of an in vitro cultivation system for these veterinary significant bacteria.Inorganic pyrophosphatases (PPase) are important enzymes that catalyze the hydrolysis of inorganic pyrophosphate PPi to inorganic phosphate Pi. PPases are essential and ubiquitous metal-dependent enzymes providing a thermodynamic pull for many biosynthetic reactions. Here, we describe the identification, recombinant production and characterization of the soluble (s)PPase of Mycoplasma suis. RESULTS: Screening of genomic M. suis libraries was used to identify a gene encoding the M. suis inorganic pyrophosphatase (sPPase). The M. suis sPPase consists of 164 amino acids with a molecular mass of 20 kDa. The highest identity of 63.7% was found to the M. penetrans sPPase. The typical 13 active site residues as well as the cation binding signature could be also identified in the M. suis sPPase. The activity of the M. suis enzyme was strongly dependent on Mg2+ and significantly lower in the presence of Mn2+ and Zn2+. Addition of Ca2+ and EDTA inhibited the M. suis sPPase activity. These characteristics confirmed the affiliation of the M. suis PPase to family I soluble PPases. The highest activity was determined at pH 9.0. In M. suis the sPPase builds tetramers of 80 kDa which were detected by convalescent sera from experimentally M. suis infected pigs. CONCLUSION: The identification and characterization of the sPPase of M. suis is an additional step towards the clarification of the metabolism of hemotrophic mycoplasmas and, thus, important for the establishment of an in vitro cultivation system. As an antigenic and conserved protein the M. suis sPPase could in future be further analyzed as a diagnostic antigen.


Subject(s)
Bacterial Proteins/chemistry , Inorganic Pyrophosphatase/chemistry , Mycoplasma/enzymology , Amino Acid Sequence , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Enzyme Stability , Inorganic Pyrophosphatase/genetics , Inorganic Pyrophosphatase/metabolism , Molecular Sequence Data , Molecular Weight , Mycoplasma/chemistry , Mycoplasma/genetics , Mycoplasma Infections/microbiology , Mycoplasma Infections/veterinary , Sequence Alignment , Swine , Swine Diseases/microbiology
2.
Environ Microbiol ; 11(10): 2676-86, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19601962

ABSTRACT

Bacterioplankton growth in temperate Lake Zurich (Switzerland) was studied during the spring phytoplankton bloom by in situ techniques and short-term dilution bioassays. A peak of chlorophyll a (Chl a) concentrations was followed by a rise of bacterial cell numbers and leucine assimilation rates, of the proportions of cells incorporating 5-bromo-2-deoxyuridine (BrdU), and of community net growth rates in dilution cultures. Incorporation of BrdU was low in Betaproteobacteria (2 +/- 1%), indicating that these bacteria did not incorporate the tracer. Pronounced growth of Betaproteobacteria in the enrichments was only observed after the decline of the phytoplankton bloom. An initial peak in the proportions of BrdU-positive Actinobacteria (30%) preceded a distinct rise of their cell numbers during the period of the Chl a maximum. Cytophaga-Flavobacteria (CF) changed little in numbers, but featured high proportions of BrdU-positive cells (28 +/- 12%). Moreover, CF represented > 90% of all newly formed cells in dilution cultures before and during the phytoplankton bloom. One phylogenetic lineage of cultivable Flavobacteria (FLAV2) represented a small (0.5-1%) but highly active population in lake plankton. The growth rates of FLAV2 in dilution cultures doubled during the period of the Chl a maximum, indicating stimulation by phytoplankton exudates. Thus, CF, and specifically Flavobacteria, appeared to be substantially more important for carbon transfer in Lake Zurich spring bacterioplankton than was suggested by their standing stocks. The high in situ growth potential of these bacteria might have been counterbalanced by top-down control.


Subject(s)
Flavobacteriaceae/growth & development , Phytoplankton/growth & development , Water Microbiology , Actinobacteria/genetics , Actinobacteria/growth & development , Actinobacteria/isolation & purification , Betaproteobacteria/genetics , Betaproteobacteria/growth & development , Betaproteobacteria/isolation & purification , Bromodeoxyuridine , Cytophaga/genetics , Cytophaga/growth & development , Cytophaga/isolation & purification , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Ecosystem , Flavobacteriaceae/genetics , Flavobacteriaceae/isolation & purification , Fresh Water/microbiology , In Situ Hybridization, Fluorescence , Molecular Sequence Data , Phylogeny , Seasons , Switzerland
3.
J Phys Chem B ; 110(38): 18758-63, 2006 Sep 28.
Article in English | MEDLINE | ID: mdl-16986865

ABSTRACT

An analytically solvable model of multilevel condensed-phase quantum dynamics relevant to vibrational relaxation and electron transfer is presented. Exact solutions are derived for the reduced system density matrix dynamics of a degenerate N-level quantum system characterized by nearest-neighbor hopping and off-diagonal coupling (which is linear in the bath coordinates) to a harmonic oscillator bath. We demonstrate that for N> 2 the long-time steady-state system site occupation probabilities are not the same for all sites; that is, they are distributed in a non-Boltzmann manner, which depends on the initial conditions and the number of levels in the system. Although the system-bath Hamiltonian considered here is restricted in form, the availability of an exact solution enables us to study the model in all regions of an extensive parameter space.

4.
J Phys Chem B ; 110(38): 18764-70, 2006 Sep 28.
Article in English | MEDLINE | ID: mdl-16986866

ABSTRACT

An exactly solvable model of multisite condensed-phase vibrational relaxation was studied in Paper I (Peter, S.; Evans, D. G.; Coalson, R. D. J. Phys. Chem. B 2006, 110, 18758.), where it was shown that long-time steady-state site populations of a degenerate N-level system are not equal (hence, they are non-Boltzmann) and depend on the initial preparation of the system and the number of sites that it comprises. Here we consider a generalization of the model to the case of a nondegenerate three-level system coupled to a high-dimensional bath: such a model system has direct relevance to a large class of donor-bridge-acceptor electron transfer processes. Because the quantum dynamics of this system cannot be computed analytically, we compare numerically exact path integral calculations to the predictions of second-order time-local relaxation theory. For modest system-bath coupling strengths, the two sets of results are in excellent agreement. They show that non-Boltzmann long-time steady-state site populations are obtained when the level splitting is small but nonzero, whereas at larger values of the system bias (asymmetry) these populations become Boltzmann distributed.

SELECTION OF CITATIONS
SEARCH DETAIL
...